用反向传播神经网络预测流行病学时间序列

C. Bustamante-Sa, F. Nobre
{"title":"用反向传播神经网络预测流行病学时间序列","authors":"C. Bustamante-Sa, F. Nobre","doi":"10.1109/MWSCAS.1995.510351","DOIUrl":null,"url":null,"abstract":"In public health, surveillance is an important issue. To account for the dynamics of diseases in the population, time series methodologies have been used to provide forecasts of future behaviors. Here, we evaluated the use of backpropagation trained multilayer feedforward networks to forecast epidemiological time series. Sixteen different models within this paradigm, differing basically in input layers and training set presentation, were tested and discussed. Six of them produced fair forecasts for the hepatitis B case occurrence in the US time series.","PeriodicalId":165081,"journal":{"name":"38th Midwest Symposium on Circuits and Systems. Proceedings","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Forecasting epidemiological time series with backpropagation neural networks\",\"authors\":\"C. Bustamante-Sa, F. Nobre\",\"doi\":\"10.1109/MWSCAS.1995.510351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In public health, surveillance is an important issue. To account for the dynamics of diseases in the population, time series methodologies have been used to provide forecasts of future behaviors. Here, we evaluated the use of backpropagation trained multilayer feedforward networks to forecast epidemiological time series. Sixteen different models within this paradigm, differing basically in input layers and training set presentation, were tested and discussed. Six of them produced fair forecasts for the hepatitis B case occurrence in the US time series.\",\"PeriodicalId\":165081,\"journal\":{\"name\":\"38th Midwest Symposium on Circuits and Systems. Proceedings\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"38th Midwest Symposium on Circuits and Systems. Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.1995.510351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"38th Midwest Symposium on Circuits and Systems. Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.1995.510351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在公共卫生领域,监测是一个重要问题。为了解释人群中疾病的动态,时间序列方法已被用于预测未来的行为。在这里,我们评估了使用反向传播训练多层前馈网络来预测流行病学时间序列。我们测试和讨论了这个范例中的16个不同的模型,它们在输入层和训练集表示上基本不同。其中6个对美国时间序列中乙型肝炎病例的发生做出了合理的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting epidemiological time series with backpropagation neural networks
In public health, surveillance is an important issue. To account for the dynamics of diseases in the population, time series methodologies have been used to provide forecasts of future behaviors. Here, we evaluated the use of backpropagation trained multilayer feedforward networks to forecast epidemiological time series. Sixteen different models within this paradigm, differing basically in input layers and training set presentation, were tested and discussed. Six of them produced fair forecasts for the hepatitis B case occurrence in the US time series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信