大训练集对在线日语汉字和英语草书识别器的影响

H. Rowley, Manish Goyal, John Bennett
{"title":"大训练集对在线日语汉字和英语草书识别器的影响","authors":"H. Rowley, Manish Goyal, John Bennett","doi":"10.1109/IWFHR.2002.1030881","DOIUrl":null,"url":null,"abstract":"Much research in handwriting recognition has focused on how to improve recognizers with constrained training set sizes. This paper presents the results of training a nearest-neighbor based online Japanese Kanji recognizer and a neural-network based online cursive English recognizer on a wide range of training set sizes, including sizes not generally available. The experiments demonstrate that increasing the amount of training data improves the accuracy, even when the recognizer's representation power is limited.","PeriodicalId":114017,"journal":{"name":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","volume":"42 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"The effect of large training set sizes on online Japanese Kanji and English cursive recognizers\",\"authors\":\"H. Rowley, Manish Goyal, John Bennett\",\"doi\":\"10.1109/IWFHR.2002.1030881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Much research in handwriting recognition has focused on how to improve recognizers with constrained training set sizes. This paper presents the results of training a nearest-neighbor based online Japanese Kanji recognizer and a neural-network based online cursive English recognizer on a wide range of training set sizes, including sizes not generally available. The experiments demonstrate that increasing the amount of training data improves the accuracy, even when the recognizer's representation power is limited.\",\"PeriodicalId\":114017,\"journal\":{\"name\":\"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition\",\"volume\":\"42 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWFHR.2002.1030881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWFHR.2002.1030881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

手写识别的许多研究都集中在如何在训练集大小受限的情况下改进识别器。本文介绍了基于最近邻的在线日语汉字识别器和基于神经网络的在线草书英语识别器在广泛的训练集大小上的训练结果,包括通常不可用的大小。实验表明,即使识别器的表示能力有限,增加训练数据量也能提高准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The effect of large training set sizes on online Japanese Kanji and English cursive recognizers
Much research in handwriting recognition has focused on how to improve recognizers with constrained training set sizes. This paper presents the results of training a nearest-neighbor based online Japanese Kanji recognizer and a neural-network based online cursive English recognizer on a wide range of training set sizes, including sizes not generally available. The experiments demonstrate that increasing the amount of training data improves the accuracy, even when the recognizer's representation power is limited.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信