小波神经网络用于信号或函数逼近的快速收敛算法

Song Xiangyu, Qi Feihu
{"title":"小波神经网络用于信号或函数逼近的快速收敛算法","authors":"Song Xiangyu, Qi Feihu","doi":"10.1109/ICSIGP.1996.566584","DOIUrl":null,"url":null,"abstract":"A new way to set the initial values of the wavelet neural network's parameters is proposed in order to improve the convergence speed. Experiments on linear polynomials, exponent functions, sin & cos functions and a certain multistage simulation function show the neural network has a much faster convergence speed and can be widely used for approximating many kinds of signals and functions. A discussion on the merit of this method is given. The experiment results are satisfactory.","PeriodicalId":385432,"journal":{"name":"Proceedings of Third International Conference on Signal Processing (ICSP'96)","volume":"41 18","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fast convergence algorithm for wavelet neural network used for signal or function approximation\",\"authors\":\"Song Xiangyu, Qi Feihu\",\"doi\":\"10.1109/ICSIGP.1996.566584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new way to set the initial values of the wavelet neural network's parameters is proposed in order to improve the convergence speed. Experiments on linear polynomials, exponent functions, sin & cos functions and a certain multistage simulation function show the neural network has a much faster convergence speed and can be widely used for approximating many kinds of signals and functions. A discussion on the merit of this method is given. The experiment results are satisfactory.\",\"PeriodicalId\":385432,\"journal\":{\"name\":\"Proceedings of Third International Conference on Signal Processing (ICSP'96)\",\"volume\":\"41 18\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Third International Conference on Signal Processing (ICSP'96)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIGP.1996.566584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Third International Conference on Signal Processing (ICSP'96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIGP.1996.566584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了提高小波神经网络的收敛速度,提出了一种设置小波神经网络参数初值的新方法。对线性多项式、指数函数、sin和cos函数以及某多阶段仿真函数的实验表明,神经网络具有更快的收敛速度,可广泛用于逼近多种信号和函数。对该方法的优点进行了讨论。实验结果令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast convergence algorithm for wavelet neural network used for signal or function approximation
A new way to set the initial values of the wavelet neural network's parameters is proposed in order to improve the convergence speed. Experiments on linear polynomials, exponent functions, sin & cos functions and a certain multistage simulation function show the neural network has a much faster convergence speed and can be widely used for approximating many kinds of signals and functions. A discussion on the merit of this method is given. The experiment results are satisfactory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信