参数高效多尺度胶囊网络

Minki Jeong, Changick Kim
{"title":"参数高效多尺度胶囊网络","authors":"Minki Jeong, Changick Kim","doi":"10.1109/ICIP42928.2021.9506364","DOIUrl":null,"url":null,"abstract":"Capsule networks consider spatial relationships in an input image. The relationship-based feature propagation in capsule networks shows promising results. However, a large number of trainable parameters limit their widespread use. In this paper, we propose Decomposed Capsule Network (DCN) to reduce the number of training parameters in the primary capsule generation stage. Our DCN represents a capsule as a combination of basis vectors. Generating basis vectors and their coefficients notably reduce the total number of training parameters. Moreover, we introduce an extension of the DCN architecture, named Multi-scale Decomposed Capsule Network (MDCN). The MDCN architecture integrates features from multiple scales to synthesize capsules with fewer parameters. Our proposed networks show better performance on the Fashion-MNIST dataset and the CIFAR10 dataset with fewer parameters than the original network.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"81 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Parameter Efficient Multi-Scale Capsule Network\",\"authors\":\"Minki Jeong, Changick Kim\",\"doi\":\"10.1109/ICIP42928.2021.9506364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Capsule networks consider spatial relationships in an input image. The relationship-based feature propagation in capsule networks shows promising results. However, a large number of trainable parameters limit their widespread use. In this paper, we propose Decomposed Capsule Network (DCN) to reduce the number of training parameters in the primary capsule generation stage. Our DCN represents a capsule as a combination of basis vectors. Generating basis vectors and their coefficients notably reduce the total number of training parameters. Moreover, we introduce an extension of the DCN architecture, named Multi-scale Decomposed Capsule Network (MDCN). The MDCN architecture integrates features from multiple scales to synthesize capsules with fewer parameters. Our proposed networks show better performance on the Fashion-MNIST dataset and the CIFAR10 dataset with fewer parameters than the original network.\",\"PeriodicalId\":314429,\"journal\":{\"name\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"81 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP42928.2021.9506364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

胶囊网络考虑输入图像中的空间关系。基于关系的特征传播方法在胶囊网络中取得了良好的效果。然而,大量的可训练参数限制了它们的广泛使用。在本文中,我们提出分解胶囊网络(DCN)来减少初级胶囊生成阶段的训练参数数量。我们的DCN将胶囊表示为基向量的组合。基向量及其系数的生成显著减少了训练参数的总数。此外,我们还介绍了DCN架构的扩展,称为多尺度分解胶囊网络(MDCN)。MDCN架构集成了多个尺度的特征,以更少的参数合成胶囊。我们提出的网络在Fashion-MNIST数据集和CIFAR10数据集上表现出比原始网络更好的性能,参数更少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Parameter Efficient Multi-Scale Capsule Network
Capsule networks consider spatial relationships in an input image. The relationship-based feature propagation in capsule networks shows promising results. However, a large number of trainable parameters limit their widespread use. In this paper, we propose Decomposed Capsule Network (DCN) to reduce the number of training parameters in the primary capsule generation stage. Our DCN represents a capsule as a combination of basis vectors. Generating basis vectors and their coefficients notably reduce the total number of training parameters. Moreover, we introduce an extension of the DCN architecture, named Multi-scale Decomposed Capsule Network (MDCN). The MDCN architecture integrates features from multiple scales to synthesize capsules with fewer parameters. Our proposed networks show better performance on the Fashion-MNIST dataset and the CIFAR10 dataset with fewer parameters than the original network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信