基于启发式自适应有偏随机游走算法的auv化学源定位

Shubham Garg, A. Pascoal, S. Afzulpurkar
{"title":"基于启发式自适应有偏随机游走算法的auv化学源定位","authors":"Shubham Garg, A. Pascoal, S. Afzulpurkar","doi":"10.23919/OCEANS40490.2019.8962882","DOIUrl":null,"url":null,"abstract":"We draw inspiration from the behavior of single-celled organisms to present a chemotaxis-inspired Adaptive Biased Random Walk (ABRW) guidance-control law for an Autonomous Underwater Vehicle (AUV). We build on previous results available in the literature to derive a random-walk based guidance-control law for an AUV to track-in and localize a potential chemical source in a turbulence-dominated environment. The ABRW-Strategy makes use of common plume-tracking and heuristic schemes for real-time path planning of the AUV. We further draw out a more comprehensive study of the guidance-strategy and extend the work for implementation in the Medusa class of vehicles that are developed in-house by Instituto Superior Tecnico (IST). The performance of the system is assessed via Hardware-in-the-loop (HIL) simulations to illustrate the viability of using random-walk for chemical source localization. The results obtained are encouraging for in-water tests with an autonomous vehicle of the Medusa class aiming at the validation of the proposed guidance-strategy in real-time experiments.","PeriodicalId":208102,"journal":{"name":"OCEANS 2019 MTS/IEEE SEATTLE","volume":"289 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heuristics-based Adaptive Biased Random Walk Algorithm for Chemical Source Localization using AUVs\",\"authors\":\"Shubham Garg, A. Pascoal, S. Afzulpurkar\",\"doi\":\"10.23919/OCEANS40490.2019.8962882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We draw inspiration from the behavior of single-celled organisms to present a chemotaxis-inspired Adaptive Biased Random Walk (ABRW) guidance-control law for an Autonomous Underwater Vehicle (AUV). We build on previous results available in the literature to derive a random-walk based guidance-control law for an AUV to track-in and localize a potential chemical source in a turbulence-dominated environment. The ABRW-Strategy makes use of common plume-tracking and heuristic schemes for real-time path planning of the AUV. We further draw out a more comprehensive study of the guidance-strategy and extend the work for implementation in the Medusa class of vehicles that are developed in-house by Instituto Superior Tecnico (IST). The performance of the system is assessed via Hardware-in-the-loop (HIL) simulations to illustrate the viability of using random-walk for chemical source localization. The results obtained are encouraging for in-water tests with an autonomous vehicle of the Medusa class aiming at the validation of the proposed guidance-strategy in real-time experiments.\",\"PeriodicalId\":208102,\"journal\":{\"name\":\"OCEANS 2019 MTS/IEEE SEATTLE\",\"volume\":\"289 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCEANS 2019 MTS/IEEE SEATTLE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/OCEANS40490.2019.8962882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2019 MTS/IEEE SEATTLE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/OCEANS40490.2019.8962882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们从单细胞生物的行为中获得灵感,提出了一种受趋化启发的自主水下航行器(AUV)自适应有偏差随机行走(ABRW)制导控制律。我们在文献中已有的结果的基础上,推导了一个基于随机行走的制导控制律,用于AUV在湍流主导的环境中跟踪和定位潜在的化学源。该策略利用常见的羽流跟踪和启发式方法对水下机器人进行实时路径规划。我们进一步对指导战略进行了更全面的研究,并将工作扩展到由高级技术研究所(IST)内部开发的美杜莎类车辆上。通过硬件在环(HIL)仿真来评估系统的性能,以说明使用随机行走进行化学源定位的可行性。所获得的结果对于“美杜莎”级自动驾驶船的水中测试来说是令人鼓舞的,目的是在实时实验中验证所提出的制导策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heuristics-based Adaptive Biased Random Walk Algorithm for Chemical Source Localization using AUVs
We draw inspiration from the behavior of single-celled organisms to present a chemotaxis-inspired Adaptive Biased Random Walk (ABRW) guidance-control law for an Autonomous Underwater Vehicle (AUV). We build on previous results available in the literature to derive a random-walk based guidance-control law for an AUV to track-in and localize a potential chemical source in a turbulence-dominated environment. The ABRW-Strategy makes use of common plume-tracking and heuristic schemes for real-time path planning of the AUV. We further draw out a more comprehensive study of the guidance-strategy and extend the work for implementation in the Medusa class of vehicles that are developed in-house by Instituto Superior Tecnico (IST). The performance of the system is assessed via Hardware-in-the-loop (HIL) simulations to illustrate the viability of using random-walk for chemical source localization. The results obtained are encouraging for in-water tests with an autonomous vehicle of the Medusa class aiming at the validation of the proposed guidance-strategy in real-time experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信