DE-FPA:一种用于函数最小化的混合差分进化-花授粉算法

Dwaipayan Chakraborty, S. Saha, Oindrilla Dutta
{"title":"DE-FPA:一种用于函数最小化的混合差分进化-花授粉算法","authors":"Dwaipayan Chakraborty, S. Saha, Oindrilla Dutta","doi":"10.1109/ICHPCA.2014.7045350","DOIUrl":null,"url":null,"abstract":"In this paper, a new hybrid population based algorithm (DE-FPA) is proposed with the combination of differential evolution optimization algorithm and flower pollination algorithm. The main idea is to integrate the natural evolution characteristics of the population in differential evolution algorithm with the pollination behavior of flowering plant in flower pollination algorithm to synthesize the strength and power of both the algorithms. The hybrid algorithm is robust in the sense that the globalization takes place in evolution. Some benchmark test functions are utilized here to compare the hybrid algorithm with the individual DE and FPA algorithms in searching the best solution. The results show the hybrid algorithm possesses a better capability in searching for the sufficiently good solution and to escape from local optima. In addition to that, a novel concept of dynamic adaptive weight is introduced for faster convergence than the individual algorithms, thereby making the hybrid one competent.","PeriodicalId":197528,"journal":{"name":"2014 International Conference on High Performance Computing and Applications (ICHPCA)","volume":"66 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"DE-FPA: A hybrid differential evolution-flower pollination algorithm for function minimization\",\"authors\":\"Dwaipayan Chakraborty, S. Saha, Oindrilla Dutta\",\"doi\":\"10.1109/ICHPCA.2014.7045350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new hybrid population based algorithm (DE-FPA) is proposed with the combination of differential evolution optimization algorithm and flower pollination algorithm. The main idea is to integrate the natural evolution characteristics of the population in differential evolution algorithm with the pollination behavior of flowering plant in flower pollination algorithm to synthesize the strength and power of both the algorithms. The hybrid algorithm is robust in the sense that the globalization takes place in evolution. Some benchmark test functions are utilized here to compare the hybrid algorithm with the individual DE and FPA algorithms in searching the best solution. The results show the hybrid algorithm possesses a better capability in searching for the sufficiently good solution and to escape from local optima. In addition to that, a novel concept of dynamic adaptive weight is introduced for faster convergence than the individual algorithms, thereby making the hybrid one competent.\",\"PeriodicalId\":197528,\"journal\":{\"name\":\"2014 International Conference on High Performance Computing and Applications (ICHPCA)\",\"volume\":\"66 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on High Performance Computing and Applications (ICHPCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICHPCA.2014.7045350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on High Performance Computing and Applications (ICHPCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHPCA.2014.7045350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

本文将差分进化优化算法与花卉授粉算法相结合,提出了一种新的基于混合种群的优化算法(DE-FPA)。其主要思想是将差分进化算法中种群的自然进化特征与开花植物的传粉行为结合起来,综合两种算法的优势和威力。混合算法具有鲁棒性,因为全球化是在进化过程中发生的。本文利用一些基准测试函数将混合算法与单独的DE和FPA算法在搜索最佳解方面进行比较。结果表明,混合算法在寻找足够好的解和摆脱局部最优解方面具有较好的能力。此外,还引入了动态自适应权值的概念,使混合算法的收敛速度比单个算法更快,从而使混合算法更有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DE-FPA: A hybrid differential evolution-flower pollination algorithm for function minimization
In this paper, a new hybrid population based algorithm (DE-FPA) is proposed with the combination of differential evolution optimization algorithm and flower pollination algorithm. The main idea is to integrate the natural evolution characteristics of the population in differential evolution algorithm with the pollination behavior of flowering plant in flower pollination algorithm to synthesize the strength and power of both the algorithms. The hybrid algorithm is robust in the sense that the globalization takes place in evolution. Some benchmark test functions are utilized here to compare the hybrid algorithm with the individual DE and FPA algorithms in searching the best solution. The results show the hybrid algorithm possesses a better capability in searching for the sufficiently good solution and to escape from local optima. In addition to that, a novel concept of dynamic adaptive weight is introduced for faster convergence than the individual algorithms, thereby making the hybrid one competent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信