林登语法分解压缩文本重访

Isamu Furuya, Yuto Nakashima, I. Tomohiro, Shunsuke Inenaga, H. Bannai, M. Takeda
{"title":"林登语法分解压缩文本重访","authors":"Isamu Furuya, Yuto Nakashima, I. Tomohiro, Shunsuke Inenaga, H. Bannai, M. Takeda","doi":"10.4230/LIPIcs.CPM.2018.24","DOIUrl":null,"url":null,"abstract":"We revisit the problem of computing the Lyndon factorization of a string w of length N which is given as a straight line program (SLP) of size n. For this problem, we show a new algorithm which runs in O(P(n, N) + Q(n, N)n log log N) time and O(n log N + S(n, N)) space where P(n, N), S(n,N), Q(n,N) are respectively the pre-processing time, space, and query time of a data structure for longest common extensions (LCE) on SLPs. Our algorithm improves the algorithm proposed by I et al. (TCS '17), and can be more efficient than the O(N)-time solution by Duval (J. Algorithms '83) when w is highly compressible.","PeriodicalId":236737,"journal":{"name":"Annual Symposium on Combinatorial Pattern Matching","volume":"47 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Lyndon Factorization of Grammar Compressed Texts Revisited\",\"authors\":\"Isamu Furuya, Yuto Nakashima, I. Tomohiro, Shunsuke Inenaga, H. Bannai, M. Takeda\",\"doi\":\"10.4230/LIPIcs.CPM.2018.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We revisit the problem of computing the Lyndon factorization of a string w of length N which is given as a straight line program (SLP) of size n. For this problem, we show a new algorithm which runs in O(P(n, N) + Q(n, N)n log log N) time and O(n log N + S(n, N)) space where P(n, N), S(n,N), Q(n,N) are respectively the pre-processing time, space, and query time of a data structure for longest common extensions (LCE) on SLPs. Our algorithm improves the algorithm proposed by I et al. (TCS '17), and can be more efficient than the O(N)-time solution by Duval (J. Algorithms '83) when w is highly compressible.\",\"PeriodicalId\":236737,\"journal\":{\"name\":\"Annual Symposium on Combinatorial Pattern Matching\",\"volume\":\"47 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Symposium on Combinatorial Pattern Matching\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.CPM.2018.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Symposium on Combinatorial Pattern Matching","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CPM.2018.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们重新计算的林登分解的问题给出一个字符串的长度N w的直线程序(SLP)大小N。对于这个问题,我们展示了一个新的算法运行在O (P (N, N) + N (N, N)日志O (log N))时间和O (N log N + S (N, N))空间,P (N, N), (N, N)、问(N, N)分别预处理时间,空间,和查询时间最长公共数据结构的扩展(特性)得到。我们的算法改进了I等人(TCS '17)提出的算法,并且在w是高度可压缩的情况下,可以比Duval (J. Algorithms '83)的O(N)时间解更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lyndon Factorization of Grammar Compressed Texts Revisited
We revisit the problem of computing the Lyndon factorization of a string w of length N which is given as a straight line program (SLP) of size n. For this problem, we show a new algorithm which runs in O(P(n, N) + Q(n, N)n log log N) time and O(n log N + S(n, N)) space where P(n, N), S(n,N), Q(n,N) are respectively the pre-processing time, space, and query time of a data structure for longest common extensions (LCE) on SLPs. Our algorithm improves the algorithm proposed by I et al. (TCS '17), and can be more efficient than the O(N)-time solution by Duval (J. Algorithms '83) when w is highly compressible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信