珠海一号高光谱影像的PM2.5和PM10估算

Shengjie Liu, Q. Shi
{"title":"珠海一号高光谱影像的PM2.5和PM10估算","authors":"Shengjie Liu, Q. Shi","doi":"10.1109/IGARSS46834.2022.9884493","DOIUrl":null,"url":null,"abstract":"Particulate matter (PM), such as PM2.5 and PM10, was the major pollutant in a severe air pollution episode in 2013 eastern China. Limited by the coverage of stations, fine-scale monitoring at every corner in the city is difficult, if not impossible. Hyperspectral imagery can capture the ground and air information, from which we can estimate the concentrations of PM. In this study, we develop a multitask learning method to estimate the concentrations of PM based on the 10-m hyperspectral data from the newly-launched Zhuhai-1 satellites. We first convert the raw radiance to top-of-atmosphere (TOA) reflectance using the 1985 Wehrli solar irradiance spectrum. Then, we train a multitask network to simultaneously estimate PM2.5 and PM10 concentrations based on the TOA hyperspectral data. Results show that our method leads to estimations of an R-squared of 0.77 for PM2.5 and an R-squared of 0.42 for PM10.","PeriodicalId":426003,"journal":{"name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","volume":"115 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating PM2.5 and PM10 on Zhuhai-1 Hyperspectral Imagery\",\"authors\":\"Shengjie Liu, Q. Shi\",\"doi\":\"10.1109/IGARSS46834.2022.9884493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particulate matter (PM), such as PM2.5 and PM10, was the major pollutant in a severe air pollution episode in 2013 eastern China. Limited by the coverage of stations, fine-scale monitoring at every corner in the city is difficult, if not impossible. Hyperspectral imagery can capture the ground and air information, from which we can estimate the concentrations of PM. In this study, we develop a multitask learning method to estimate the concentrations of PM based on the 10-m hyperspectral data from the newly-launched Zhuhai-1 satellites. We first convert the raw radiance to top-of-atmosphere (TOA) reflectance using the 1985 Wehrli solar irradiance spectrum. Then, we train a multitask network to simultaneously estimate PM2.5 and PM10 concentrations based on the TOA hyperspectral data. Results show that our method leads to estimations of an R-squared of 0.77 for PM2.5 and an R-squared of 0.42 for PM10.\",\"PeriodicalId\":426003,\"journal\":{\"name\":\"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"115 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS46834.2022.9884493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS46834.2022.9884493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

PM2.5和PM10等颗粒物(PM)是2013年中国东部一次严重大气污染事件的主要污染物。受限于站点的覆盖范围,在城市的每个角落进行精细的监控是困难的,如果不是不可能的话。高光谱图像可以捕获地面和空中的信息,我们可以从中估计PM的浓度。本文基于新发射的珠海一号卫星10-m高光谱数据,开发了一种多任务学习方法来估计PM浓度。我们首先使用1985年Wehrli太阳辐照光谱将原始辐射转换为大气顶部(TOA)反射率。然后,基于TOA高光谱数据,我们训练了一个多任务网络来同时估计PM2.5和PM10浓度。结果表明,我们的方法得出PM2.5的r平方估计为0.77,PM10的r平方估计为0.42。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating PM2.5 and PM10 on Zhuhai-1 Hyperspectral Imagery
Particulate matter (PM), such as PM2.5 and PM10, was the major pollutant in a severe air pollution episode in 2013 eastern China. Limited by the coverage of stations, fine-scale monitoring at every corner in the city is difficult, if not impossible. Hyperspectral imagery can capture the ground and air information, from which we can estimate the concentrations of PM. In this study, we develop a multitask learning method to estimate the concentrations of PM based on the 10-m hyperspectral data from the newly-launched Zhuhai-1 satellites. We first convert the raw radiance to top-of-atmosphere (TOA) reflectance using the 1985 Wehrli solar irradiance spectrum. Then, we train a multitask network to simultaneously estimate PM2.5 and PM10 concentrations based on the TOA hyperspectral data. Results show that our method leads to estimations of an R-squared of 0.77 for PM2.5 and an R-squared of 0.42 for PM10.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信