解析被遮挡的人

Golnaz Ghiasi, Yi Yang, Deva Ramanan, Charless C. Fowlkes
{"title":"解析被遮挡的人","authors":"Golnaz Ghiasi, Yi Yang, Deva Ramanan, Charless C. Fowlkes","doi":"10.1109/CVPR.2014.308","DOIUrl":null,"url":null,"abstract":"Occlusion poses a significant difficulty for object recognition due to the combinatorial diversity of possible occlusion patterns. We take a strongly supervised, non-parametric approach to modeling occlusion by learning deformable models with many local part mixture templates using large quantities of synthetically generated training data. This allows the model to learn the appearance of different occlusion patterns including figure-ground cues such as the shapes of occluding contours as well as the co-occurrence statistics of occlusion between neighboring parts. The underlying part mixture-structure also allows the model to capture coherence of object support masks between neighboring parts and make compelling predictions of figure-ground-occluder segmentations. We test the resulting model on human pose estimation under heavy occlusion and find it produces improved localization accuracy.","PeriodicalId":319578,"journal":{"name":"2014 IEEE Conference on Computer Vision and Pattern Recognition","volume":"423 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"Parsing Occluded People\",\"authors\":\"Golnaz Ghiasi, Yi Yang, Deva Ramanan, Charless C. Fowlkes\",\"doi\":\"10.1109/CVPR.2014.308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Occlusion poses a significant difficulty for object recognition due to the combinatorial diversity of possible occlusion patterns. We take a strongly supervised, non-parametric approach to modeling occlusion by learning deformable models with many local part mixture templates using large quantities of synthetically generated training data. This allows the model to learn the appearance of different occlusion patterns including figure-ground cues such as the shapes of occluding contours as well as the co-occurrence statistics of occlusion between neighboring parts. The underlying part mixture-structure also allows the model to capture coherence of object support masks between neighboring parts and make compelling predictions of figure-ground-occluder segmentations. We test the resulting model on human pose estimation under heavy occlusion and find it produces improved localization accuracy.\",\"PeriodicalId\":319578,\"journal\":{\"name\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"423 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2014.308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2014.308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

摘要

由于遮挡模式的组合多样性,遮挡给目标识别带来了很大的困难。我们采用一种强监督的非参数方法,通过使用大量合成生成的训练数据,学习具有许多局部混合模板的可变形模型来建模遮挡。这允许模型学习不同遮挡模式的外观,包括图像-地面线索,如遮挡轮廓的形状,以及相邻部分之间遮挡的共现统计。底层部分混合结构还允许模型捕获相邻部分之间对象支持掩模的一致性,并对图像-地面遮挡物分割做出令人信服的预测。我们在严重遮挡下对生成的模型进行了人体姿态估计测试,发现它可以提高定位精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parsing Occluded People
Occlusion poses a significant difficulty for object recognition due to the combinatorial diversity of possible occlusion patterns. We take a strongly supervised, non-parametric approach to modeling occlusion by learning deformable models with many local part mixture templates using large quantities of synthetically generated training data. This allows the model to learn the appearance of different occlusion patterns including figure-ground cues such as the shapes of occluding contours as well as the co-occurrence statistics of occlusion between neighboring parts. The underlying part mixture-structure also allows the model to capture coherence of object support masks between neighboring parts and make compelling predictions of figure-ground-occluder segmentations. We test the resulting model on human pose estimation under heavy occlusion and find it produces improved localization accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信