约束最小化的牛顿方法和goldstein步长规则

J. Dunn
{"title":"约束最小化的牛顿方法和goldstein步长规则","authors":"J. Dunn","doi":"10.1109/CDC.1980.272011","DOIUrl":null,"url":null,"abstract":"A relaxed form of Newton's method is analyzed for the problem, min¿F, with ¿ a convex subset of a real Banach space X, and F:X ¿ R1 twice differentiable in Fréchet's sense. Feasible directions are obtained by minimizing local quadratic approximations Q to F, and step lengths are determined by Goldstein's rule. The results established here yield two significant extensions of an earlier theorem of Goldstein for the special case ¿ = X = a Hilbert space. Connections are made with a recently formulated classification scheme for singular and nonsingular extremals.","PeriodicalId":332964,"journal":{"name":"1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes","volume":"65 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1980-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Newton's method and the goldstein step length rule for constrained minimization\",\"authors\":\"J. Dunn\",\"doi\":\"10.1109/CDC.1980.272011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A relaxed form of Newton's method is analyzed for the problem, min¿F, with ¿ a convex subset of a real Banach space X, and F:X ¿ R1 twice differentiable in Fréchet's sense. Feasible directions are obtained by minimizing local quadratic approximations Q to F, and step lengths are determined by Goldstein's rule. The results established here yield two significant extensions of an earlier theorem of Goldstein for the special case ¿ = X = a Hilbert space. Connections are made with a recently formulated classification scheme for singular and nonsingular extremals.\",\"PeriodicalId\":332964,\"journal\":{\"name\":\"1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes\",\"volume\":\"65 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1980-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1980.272011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1980.272011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对于具有实Banach空间X的凸子集,且F:X¿R1在frimcheet意义上可二阶微的min¿F问题,本文分析了牛顿方法的一种松弛形式。通过最小化局部二次逼近Q到F得到可行方向,步长由Goldstein规则确定。这里建立的结果对特殊情况¿= X = a Hilbert空间给出了Goldstein早期定理的两个重要推广。连接与最近制定的奇异和非奇异极值的分类方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Newton's method and the goldstein step length rule for constrained minimization
A relaxed form of Newton's method is analyzed for the problem, min¿F, with ¿ a convex subset of a real Banach space X, and F:X ¿ R1 twice differentiable in Fréchet's sense. Feasible directions are obtained by minimizing local quadratic approximations Q to F, and step lengths are determined by Goldstein's rule. The results established here yield two significant extensions of an earlier theorem of Goldstein for the special case ¿ = X = a Hilbert space. Connections are made with a recently formulated classification scheme for singular and nonsingular extremals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信