基于正交编码方案的低功耗低成本毫米波数字波束形成器

Kefayet Ullah, S. B. Venkatakrishnan, J. Volakis
{"title":"基于正交编码方案的低功耗低成本毫米波数字波束形成器","authors":"Kefayet Ullah, S. B. Venkatakrishnan, J. Volakis","doi":"10.23919/USNC-URSIRSM52661.2021.9552370","DOIUrl":null,"url":null,"abstract":"A novel four-channel receiver architecture is proposed using an orthogonal coding scheme for low-cost and low complexity millimeter-wave (mm- Wave) digital beamforming. In this proposed architecture, multiple signals are encoded with othogonal Walsh-Hadamard (WH) codes and multiplexed into a single channel. The combined signal is fed into a single Analog-to-Digital converter (ADC) at the digital baseband, leading to significant reduction in size, weight, power and cost (SWaP-C). As a result, the hardware complexity of the receiver is reduced by more than 95 %. A key challenge addressed in this paper is the signal-to-noise ratio (SNR) degradation due to inter-channel interference. Interference is greatly dependent on the choice of the employed orthogonal WH codes. In this paper, we introduce methods to achieve greater than 30 dB inter-channel interference rejection across a bandwidth of 400 MHz. As such, the proposed reduced SWaP-C and interference mitigation can have a major impact in realizing innovations for the 28-GHz and beyond mmWave links.","PeriodicalId":365284,"journal":{"name":"2021 USNC-URSI Radio Science Meeting (USCN-URSI RSM)","volume":"89 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low Power and Low Cost Millimeter-Wave Digital Beamformer Using An Orthogonal Coding Scheme\",\"authors\":\"Kefayet Ullah, S. B. Venkatakrishnan, J. Volakis\",\"doi\":\"10.23919/USNC-URSIRSM52661.2021.9552370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel four-channel receiver architecture is proposed using an orthogonal coding scheme for low-cost and low complexity millimeter-wave (mm- Wave) digital beamforming. In this proposed architecture, multiple signals are encoded with othogonal Walsh-Hadamard (WH) codes and multiplexed into a single channel. The combined signal is fed into a single Analog-to-Digital converter (ADC) at the digital baseband, leading to significant reduction in size, weight, power and cost (SWaP-C). As a result, the hardware complexity of the receiver is reduced by more than 95 %. A key challenge addressed in this paper is the signal-to-noise ratio (SNR) degradation due to inter-channel interference. Interference is greatly dependent on the choice of the employed orthogonal WH codes. In this paper, we introduce methods to achieve greater than 30 dB inter-channel interference rejection across a bandwidth of 400 MHz. As such, the proposed reduced SWaP-C and interference mitigation can have a major impact in realizing innovations for the 28-GHz and beyond mmWave links.\",\"PeriodicalId\":365284,\"journal\":{\"name\":\"2021 USNC-URSI Radio Science Meeting (USCN-URSI RSM)\",\"volume\":\"89 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 USNC-URSI Radio Science Meeting (USCN-URSI RSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/USNC-URSIRSM52661.2021.9552370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 USNC-URSI Radio Science Meeting (USCN-URSI RSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/USNC-URSIRSM52661.2021.9552370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对低成本、低复杂度的毫米波数字波束形成,提出了一种采用正交编码的四通道接收机结构。在该架构中,多个信号用正交Walsh-Hadamard (WH)码进行编码,并复用到单个信道中。合并后的信号被送入数字基带的单个模数转换器(ADC),从而显著减小了尺寸、重量、功率和成本(SWaP-C)。因此,接收机的硬件复杂度降低了95%以上。本文解决的一个关键挑战是由于信道间干扰导致的信噪比(SNR)下降。干扰很大程度上取决于所采用的正交WH码的选择。在本文中,我们介绍了在400 MHz带宽上实现大于30 dB的信道间干扰抑制的方法。因此,拟议的降低SWaP-C和干扰缓解可以对实现28 ghz及以上毫米波链路的创新产生重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low Power and Low Cost Millimeter-Wave Digital Beamformer Using An Orthogonal Coding Scheme
A novel four-channel receiver architecture is proposed using an orthogonal coding scheme for low-cost and low complexity millimeter-wave (mm- Wave) digital beamforming. In this proposed architecture, multiple signals are encoded with othogonal Walsh-Hadamard (WH) codes and multiplexed into a single channel. The combined signal is fed into a single Analog-to-Digital converter (ADC) at the digital baseband, leading to significant reduction in size, weight, power and cost (SWaP-C). As a result, the hardware complexity of the receiver is reduced by more than 95 %. A key challenge addressed in this paper is the signal-to-noise ratio (SNR) degradation due to inter-channel interference. Interference is greatly dependent on the choice of the employed orthogonal WH codes. In this paper, we introduce methods to achieve greater than 30 dB inter-channel interference rejection across a bandwidth of 400 MHz. As such, the proposed reduced SWaP-C and interference mitigation can have a major impact in realizing innovations for the 28-GHz and beyond mmWave links.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信