Jing Zhang, Xiangdong Zhang, J. Walsh, E. Roesler, B. Hillman
{"title":"吹雪和冰湖的同时增强了北极地表-大气相互作用:2018年极端风事件的建模研究","authors":"Jing Zhang, Xiangdong Zhang, J. Walsh, E. Roesler, B. Hillman","doi":"10.1088/2752-5295/acb9b1","DOIUrl":null,"url":null,"abstract":"Snow, a critical element influencing surface energy/mass balance of the Arctic, can also drift in the air to complicate the surface–atmosphere interaction. This complexity can be further enhanced when the surface includes polynya. These processes, however, have not been well studied and are often unrepresented in climate and weather models. We address this by applying a snow/ice-enhanced version of the Weather Research and Forecasting model to examine the impacts of blowing snow and polynya on the surface–atmosphere interaction during an extreme Arctic wind event in February 2018, when an unprecedented polynya occurred off the north coast of Greenland. The results indicate that blowing snow and the polynya contribute opposite signs to the changes of surface sensible/latent heat fluxes, but both cause enhanced downwelling longwave radiation. Process analysis shows that the thermodynamic moistening/cooling effects due to the blowing snow sublimation are amplified by increased surface winds, reduced temperature inversion, and upward wind anomaly associated with the polynya. Enhanced surface–atmosphere interaction over a polynya due to blowing snow sublimation can potentially sustain the continuing development of the polynya.","PeriodicalId":432508,"journal":{"name":"Environmental Research: Climate","volume":"91 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concurrence of blowing snow and polynya enhances arctic surface–atmosphere interaction: a modeling study with an extreme wind event in 2018\",\"authors\":\"Jing Zhang, Xiangdong Zhang, J. Walsh, E. Roesler, B. Hillman\",\"doi\":\"10.1088/2752-5295/acb9b1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Snow, a critical element influencing surface energy/mass balance of the Arctic, can also drift in the air to complicate the surface–atmosphere interaction. This complexity can be further enhanced when the surface includes polynya. These processes, however, have not been well studied and are often unrepresented in climate and weather models. We address this by applying a snow/ice-enhanced version of the Weather Research and Forecasting model to examine the impacts of blowing snow and polynya on the surface–atmosphere interaction during an extreme Arctic wind event in February 2018, when an unprecedented polynya occurred off the north coast of Greenland. The results indicate that blowing snow and the polynya contribute opposite signs to the changes of surface sensible/latent heat fluxes, but both cause enhanced downwelling longwave radiation. Process analysis shows that the thermodynamic moistening/cooling effects due to the blowing snow sublimation are amplified by increased surface winds, reduced temperature inversion, and upward wind anomaly associated with the polynya. Enhanced surface–atmosphere interaction over a polynya due to blowing snow sublimation can potentially sustain the continuing development of the polynya.\",\"PeriodicalId\":432508,\"journal\":{\"name\":\"Environmental Research: Climate\",\"volume\":\"91 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research: Climate\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2752-5295/acb9b1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research: Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2752-5295/acb9b1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Concurrence of blowing snow and polynya enhances arctic surface–atmosphere interaction: a modeling study with an extreme wind event in 2018
Snow, a critical element influencing surface energy/mass balance of the Arctic, can also drift in the air to complicate the surface–atmosphere interaction. This complexity can be further enhanced when the surface includes polynya. These processes, however, have not been well studied and are often unrepresented in climate and weather models. We address this by applying a snow/ice-enhanced version of the Weather Research and Forecasting model to examine the impacts of blowing snow and polynya on the surface–atmosphere interaction during an extreme Arctic wind event in February 2018, when an unprecedented polynya occurred off the north coast of Greenland. The results indicate that blowing snow and the polynya contribute opposite signs to the changes of surface sensible/latent heat fluxes, but both cause enhanced downwelling longwave radiation. Process analysis shows that the thermodynamic moistening/cooling effects due to the blowing snow sublimation are amplified by increased surface winds, reduced temperature inversion, and upward wind anomaly associated with the polynya. Enhanced surface–atmosphere interaction over a polynya due to blowing snow sublimation can potentially sustain the continuing development of the polynya.