C. Silvestri, Francesco Cagnin, Francesco Lettich, S. Orlando, M. Wachowicz
{"title":"挖掘压缩空间共位模式","authors":"C. Silvestri, Francesco Cagnin, Francesco Lettich, S. Orlando, M. Wachowicz","doi":"10.1145/2834126.2834135","DOIUrl":null,"url":null,"abstract":"The discovery of co-location patterns among spatial events is an important task in spatial data mining. We introduce a new kind of spatial co-location patterns, named condensed spatial co-location patterns, that can be considered as a lossy compressed representation of all the co-location patterns. Each condensed pattern is the representative, and a superset, of a group of spatial co-location patterns in the full set of patterns such that the difference between the interestingness measure of the representative and the measures of the patterns belonging to the associated group are negligible. Our preliminary experiments show that condensed spatial co-location patterns are less sensitive to parameter changes and more robust in presence of missing data than closed spatial co-location patterns.","PeriodicalId":194029,"journal":{"name":"Proceedings of the Fourth ACM SIGSPATIAL International Workshop on Mobile Geographic Information Systems","volume":"322 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mining condensed spatial co-location patterns\",\"authors\":\"C. Silvestri, Francesco Cagnin, Francesco Lettich, S. Orlando, M. Wachowicz\",\"doi\":\"10.1145/2834126.2834135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discovery of co-location patterns among spatial events is an important task in spatial data mining. We introduce a new kind of spatial co-location patterns, named condensed spatial co-location patterns, that can be considered as a lossy compressed representation of all the co-location patterns. Each condensed pattern is the representative, and a superset, of a group of spatial co-location patterns in the full set of patterns such that the difference between the interestingness measure of the representative and the measures of the patterns belonging to the associated group are negligible. Our preliminary experiments show that condensed spatial co-location patterns are less sensitive to parameter changes and more robust in presence of missing data than closed spatial co-location patterns.\",\"PeriodicalId\":194029,\"journal\":{\"name\":\"Proceedings of the Fourth ACM SIGSPATIAL International Workshop on Mobile Geographic Information Systems\",\"volume\":\"322 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fourth ACM SIGSPATIAL International Workshop on Mobile Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2834126.2834135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth ACM SIGSPATIAL International Workshop on Mobile Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2834126.2834135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The discovery of co-location patterns among spatial events is an important task in spatial data mining. We introduce a new kind of spatial co-location patterns, named condensed spatial co-location patterns, that can be considered as a lossy compressed representation of all the co-location patterns. Each condensed pattern is the representative, and a superset, of a group of spatial co-location patterns in the full set of patterns such that the difference between the interestingness measure of the representative and the measures of the patterns belonging to the associated group are negligible. Our preliminary experiments show that condensed spatial co-location patterns are less sensitive to parameter changes and more robust in presence of missing data than closed spatial co-location patterns.