基于5G-V2X的深度学习算法优化队列行驶车辆基站分配

Chi-Chuan Ho, Bo-Hong Huang, Meng-Ting Wu, Tin Yu Wu
{"title":"基于5G-V2X的深度学习算法优化队列行驶车辆基站分配","authors":"Chi-Chuan Ho, Bo-Hong Huang, Meng-Ting Wu, Tin Yu Wu","doi":"10.1109/GCCE46687.2019.9014645","DOIUrl":null,"url":null,"abstract":"This study proposes to use deep learning algorithm based on 5G-V2X to create an artificial intelligence (AI) model for optimizing 5G base station allocation for platooning vehicles underway. Experimental data are retrieved from the simulation, and parameters, including communication between base stations and vehicles, signal strength, services and speed of platooning vehicles, are investigated to reach the optimal parameter adjustment.","PeriodicalId":303502,"journal":{"name":"2019 IEEE 8th Global Conference on Consumer Electronics (GCCE)","volume":"257 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Optimized Base Station Allocation for Platooning Vehicles Underway by Using Deep Learning Algorithm Based on 5G-V2X\",\"authors\":\"Chi-Chuan Ho, Bo-Hong Huang, Meng-Ting Wu, Tin Yu Wu\",\"doi\":\"10.1109/GCCE46687.2019.9014645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes to use deep learning algorithm based on 5G-V2X to create an artificial intelligence (AI) model for optimizing 5G base station allocation for platooning vehicles underway. Experimental data are retrieved from the simulation, and parameters, including communication between base stations and vehicles, signal strength, services and speed of platooning vehicles, are investigated to reach the optimal parameter adjustment.\",\"PeriodicalId\":303502,\"journal\":{\"name\":\"2019 IEEE 8th Global Conference on Consumer Electronics (GCCE)\",\"volume\":\"257 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 8th Global Conference on Consumer Electronics (GCCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCCE46687.2019.9014645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 8th Global Conference on Consumer Electronics (GCCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCCE46687.2019.9014645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本研究提出利用基于5G- v2x的深度学习算法,创建人工智能(AI)模型,以优化正在进行的队列车辆的5G基站分配。从仿真中提取实验数据,研究基站与车辆之间的通信、信号强度、服务和队列车辆的速度等参数,以达到最优的参数调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized Base Station Allocation for Platooning Vehicles Underway by Using Deep Learning Algorithm Based on 5G-V2X
This study proposes to use deep learning algorithm based on 5G-V2X to create an artificial intelligence (AI) model for optimizing 5G base station allocation for platooning vehicles underway. Experimental data are retrieved from the simulation, and parameters, including communication between base stations and vehicles, signal strength, services and speed of platooning vehicles, are investigated to reach the optimal parameter adjustment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信