具有马尔可夫包丢失的网络控制系统的无限视界最优控制

Hongxia Wang, Zi-Cheng Li, Tao Liu, Xiao Liang
{"title":"具有马尔可夫包丢失的网络控制系统的无限视界最优控制","authors":"Hongxia Wang, Zi-Cheng Li, Tao Liu, Xiao Liang","doi":"10.1002/oca.3045","DOIUrl":null,"url":null,"abstract":"This article is concerned with the infinite‐horizon optimal control for networked control systems with Markovian packet losses. We focus on the case that packet losses may occur in an unreliable communication channel between the sensor and the controller. This sort of packet loss enables the optimal control problem to fall into the category of optimal output‐feedback control. Also, the output involves multiplicative noise. As well known, the separation principle fails to hold in a multiplicative‐noise setting. Thus the problem is very involved. By solving forward and backward stochastic difference equations and making convergence analysis, we acquire the necessary and sufficient solvability condition and the explicit optimal controller. The achieved results are illustrated by numerical examples.","PeriodicalId":105945,"journal":{"name":"Optimal Control Applications and Methods","volume":"509 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinite‐horizon optimal control for networked control systems with Markovian packet losses\",\"authors\":\"Hongxia Wang, Zi-Cheng Li, Tao Liu, Xiao Liang\",\"doi\":\"10.1002/oca.3045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article is concerned with the infinite‐horizon optimal control for networked control systems with Markovian packet losses. We focus on the case that packet losses may occur in an unreliable communication channel between the sensor and the controller. This sort of packet loss enables the optimal control problem to fall into the category of optimal output‐feedback control. Also, the output involves multiplicative noise. As well known, the separation principle fails to hold in a multiplicative‐noise setting. Thus the problem is very involved. By solving forward and backward stochastic difference equations and making convergence analysis, we acquire the necessary and sufficient solvability condition and the explicit optimal controller. The achieved results are illustrated by numerical examples.\",\"PeriodicalId\":105945,\"journal\":{\"name\":\"Optimal Control Applications and Methods\",\"volume\":\"509 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimal Control Applications and Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/oca.3045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oca.3045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有马尔可夫包丢失的网络控制系统的无限视界最优控制问题。我们重点研究了在传感器和控制器之间的不可靠通信通道中可能发生丢包的情况。这种类型的丢包使得最优控制问题属于最优输出反馈控制的范畴。此外,输出涉及乘法噪声。众所周知,分离原理在乘性噪声设置中不成立。因此这个问题很复杂。通过求解正、后向随机差分方程并进行收敛性分析,得到了该方程的充要条件和显式最优控制器。通过数值算例说明了所得结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infinite‐horizon optimal control for networked control systems with Markovian packet losses
This article is concerned with the infinite‐horizon optimal control for networked control systems with Markovian packet losses. We focus on the case that packet losses may occur in an unreliable communication channel between the sensor and the controller. This sort of packet loss enables the optimal control problem to fall into the category of optimal output‐feedback control. Also, the output involves multiplicative noise. As well known, the separation principle fails to hold in a multiplicative‐noise setting. Thus the problem is very involved. By solving forward and backward stochastic difference equations and making convergence analysis, we acquire the necessary and sufficient solvability condition and the explicit optimal controller. The achieved results are illustrated by numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信