{"title":"用精确拉格朗日插值逼近","authors":"C. Dunham, Z. Zhu","doi":"10.1145/47917.47920","DOIUrl":null,"url":null,"abstract":"Under stated favorable conditions, the Lagrange formula for polynomial interpolation is computationally exact at the nodes. This is applied to approximation with Lagrange-type interpolation.","PeriodicalId":177516,"journal":{"name":"ACM Signum Newsletter","volume":"788 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation with exact Lagrange-type interpolation\",\"authors\":\"C. Dunham, Z. Zhu\",\"doi\":\"10.1145/47917.47920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under stated favorable conditions, the Lagrange formula for polynomial interpolation is computationally exact at the nodes. This is applied to approximation with Lagrange-type interpolation.\",\"PeriodicalId\":177516,\"journal\":{\"name\":\"ACM Signum Newsletter\",\"volume\":\"788 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Signum Newsletter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/47917.47920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Signum Newsletter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/47917.47920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Approximation with exact Lagrange-type interpolation
Under stated favorable conditions, the Lagrange formula for polynomial interpolation is computationally exact at the nodes. This is applied to approximation with Lagrange-type interpolation.