抛物型问题的稳定、全局非迭代、非重叠区域分解并行解

Y. Zhuang, Xian-He Sun
{"title":"抛物型问题的稳定、全局非迭代、非重叠区域分解并行解","authors":"Y. Zhuang, Xian-He Sun","doi":"10.1145/582034.582053","DOIUrl":null,"url":null,"abstract":"In this paper, we report a class of stabilized explicit-implicit domain decomposition (SEIDD) methods for the parallel solution of parabolic problems, based on the explicit-implicit domain decomposition (EIDD) methods. EIDD methods are globally non-iterative, non-overlapping domain decomposition methods which, when compared with Schwarz alternating algorithm based parabolic solvers, are computationally and communicationally efficient for each simulation time step but suffer from time step size restrictions due to conditional stability or conditional consistency. By adding a stabilization step to the EIDD methods, the SEIDD methods are freed from time step size restrictions while retaining EIDD’s computational and communicational efficiency for each time step, rendering themselves excellent candidates for large-scale parallel simulations. Three algorithms of the SEIDD type are implemented, which are experimentally tested to show excellent stability, computation and communication efficiencies, and high parallel speedup and scalability.","PeriodicalId":325282,"journal":{"name":"ACM/IEEE SC 2001 Conference (SC'01)","volume":"291 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Stable, Globally Non-Iterative, Non-Overlapping Domain Decomposition Parallel Solvers for Parabolic Problems\",\"authors\":\"Y. Zhuang, Xian-He Sun\",\"doi\":\"10.1145/582034.582053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we report a class of stabilized explicit-implicit domain decomposition (SEIDD) methods for the parallel solution of parabolic problems, based on the explicit-implicit domain decomposition (EIDD) methods. EIDD methods are globally non-iterative, non-overlapping domain decomposition methods which, when compared with Schwarz alternating algorithm based parabolic solvers, are computationally and communicationally efficient for each simulation time step but suffer from time step size restrictions due to conditional stability or conditional consistency. By adding a stabilization step to the EIDD methods, the SEIDD methods are freed from time step size restrictions while retaining EIDD’s computational and communicational efficiency for each time step, rendering themselves excellent candidates for large-scale parallel simulations. Three algorithms of the SEIDD type are implemented, which are experimentally tested to show excellent stability, computation and communication efficiencies, and high parallel speedup and scalability.\",\"PeriodicalId\":325282,\"journal\":{\"name\":\"ACM/IEEE SC 2001 Conference (SC'01)\",\"volume\":\"291 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM/IEEE SC 2001 Conference (SC'01)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/582034.582053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 2001 Conference (SC'01)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/582034.582053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文在显隐区域分解(EIDD)方法的基础上,给出了一类求解抛物型问题并行解的稳定的显隐区域分解(SEIDD)方法。EIDD方法是全局非迭代、非重叠的域分解方法,与基于Schwarz交替算法的抛物解算器相比,它在每个模拟时间步上都具有计算和通信效率,但由于条件稳定性或条件一致性而受到时间步长限制。通过在EIDD方法中增加一个稳定步长,SEIDD方法摆脱了时间步长的限制,同时保留了EIDD方法在每个时间步长的计算和通信效率,使其成为大规模并行模拟的优秀候选人。实现了三种SEIDD类型的算法,并经过实验测试,显示出良好的稳定性、计算和通信效率、并行加速和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stable, Globally Non-Iterative, Non-Overlapping Domain Decomposition Parallel Solvers for Parabolic Problems
In this paper, we report a class of stabilized explicit-implicit domain decomposition (SEIDD) methods for the parallel solution of parabolic problems, based on the explicit-implicit domain decomposition (EIDD) methods. EIDD methods are globally non-iterative, non-overlapping domain decomposition methods which, when compared with Schwarz alternating algorithm based parabolic solvers, are computationally and communicationally efficient for each simulation time step but suffer from time step size restrictions due to conditional stability or conditional consistency. By adding a stabilization step to the EIDD methods, the SEIDD methods are freed from time step size restrictions while retaining EIDD’s computational and communicational efficiency for each time step, rendering themselves excellent candidates for large-scale parallel simulations. Three algorithms of the SEIDD type are implemented, which are experimentally tested to show excellent stability, computation and communication efficiencies, and high parallel speedup and scalability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信