基于径向基函数的自适应模糊系统

K. Cho, Bo-Hyeun Wang
{"title":"基于径向基函数的自适应模糊系统","authors":"K. Cho, Bo-Hyeun Wang","doi":"10.1109/FUZZY.1995.409688","DOIUrl":null,"url":null,"abstract":"This paper describes a fuzzy system with adaptive capability to extract fuzzy IF-THEN rules from input and output sample data. The proposed system, called radial basis function (RBF) based adaptive fuzzy system (AFS), employs the Gaussian functions to represent the membership functions of the premise part of fuzzy rules. Three architectural deviations of the RBF based APS are also presented according to different consequence types. These provide versatility of the network to handle arbitrary fuzzy inference schemes. We present examples of classification and time series prediction to illustrate how to solve these problems using the RBF based AFS. We also compare the results of our approach with those of others to demonstrate its validity and effectiveness.<<ETX>>","PeriodicalId":150477,"journal":{"name":"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.","volume":"1024 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Radial basis function based adaptive fuzzy systems\",\"authors\":\"K. Cho, Bo-Hyeun Wang\",\"doi\":\"10.1109/FUZZY.1995.409688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a fuzzy system with adaptive capability to extract fuzzy IF-THEN rules from input and output sample data. The proposed system, called radial basis function (RBF) based adaptive fuzzy system (AFS), employs the Gaussian functions to represent the membership functions of the premise part of fuzzy rules. Three architectural deviations of the RBF based APS are also presented according to different consequence types. These provide versatility of the network to handle arbitrary fuzzy inference schemes. We present examples of classification and time series prediction to illustrate how to solve these problems using the RBF based AFS. We also compare the results of our approach with those of others to demonstrate its validity and effectiveness.<<ETX>>\",\"PeriodicalId\":150477,\"journal\":{\"name\":\"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.\",\"volume\":\"1024 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.1995.409688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1995.409688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文描述了一种具有自适应能力的模糊系统,用于从输入输出样本数据中提取模糊IF-THEN规则。提出的基于径向基函数(RBF)的自适应模糊系统(AFS)采用高斯函数表示模糊规则前提部分的隶属度函数。根据不同的结果类型,给出了基于RBF的APS的三种体系结构偏差。这为处理任意模糊推理方案提供了网络的通用性。我们给出了分类和时间序列预测的例子来说明如何使用基于RBF的AFS来解决这些问题。我们还将我们的方法的结果与其他方法的结果进行了比较,以证明其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radial basis function based adaptive fuzzy systems
This paper describes a fuzzy system with adaptive capability to extract fuzzy IF-THEN rules from input and output sample data. The proposed system, called radial basis function (RBF) based adaptive fuzzy system (AFS), employs the Gaussian functions to represent the membership functions of the premise part of fuzzy rules. Three architectural deviations of the RBF based APS are also presented according to different consequence types. These provide versatility of the network to handle arbitrary fuzzy inference schemes. We present examples of classification and time series prediction to illustrate how to solve these problems using the RBF based AFS. We also compare the results of our approach with those of others to demonstrate its validity and effectiveness.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信