基于D-DBSCAN聚类的分布式多目标跟踪

Shuoyuan Xu, Hyo-Sang Shin, A. Tsourdos
{"title":"基于D-DBSCAN聚类的分布式多目标跟踪","authors":"Shuoyuan Xu, Hyo-Sang Shin, A. Tsourdos","doi":"10.1109/REDUAS47371.2019.8999712","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel clustering-based distributed multi-target tracking algorithm over a sensor network. Each local sensor runs a joint probabilistic data association filter to obtain local state estimation. The estimates are communicated between connected sensors for track-totrack association and fusion. A novel distributed DBSCAN (D-DBSCAN) clustering algorithm is proposed to solve the track-to-track association problem. The proposed algorithm shows advantages in computational efficiency compared with conventional distributed multi-target tracking approaches. Extensive simulations provided substantial evidence for the effectiveness of the proposed algorithm.","PeriodicalId":351115,"journal":{"name":"2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS)","volume":"627 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Multi-Target Tracking with D-DBSCAN Clustering\",\"authors\":\"Shuoyuan Xu, Hyo-Sang Shin, A. Tsourdos\",\"doi\":\"10.1109/REDUAS47371.2019.8999712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel clustering-based distributed multi-target tracking algorithm over a sensor network. Each local sensor runs a joint probabilistic data association filter to obtain local state estimation. The estimates are communicated between connected sensors for track-totrack association and fusion. A novel distributed DBSCAN (D-DBSCAN) clustering algorithm is proposed to solve the track-to-track association problem. The proposed algorithm shows advantages in computational efficiency compared with conventional distributed multi-target tracking approaches. Extensive simulations provided substantial evidence for the effectiveness of the proposed algorithm.\",\"PeriodicalId\":351115,\"journal\":{\"name\":\"2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS)\",\"volume\":\"627 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/REDUAS47371.2019.8999712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/REDUAS47371.2019.8999712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于聚类的传感器网络分布式多目标跟踪算法。每个局部传感器运行一个联合概率数据关联滤波器来获得局部状态估计。这些估计值在连接的传感器之间进行通信,用于轨道间的关联和融合。针对航迹间关联问题,提出了一种新的分布式DBSCAN (D-DBSCAN)聚类算法。与传统的分布式多目标跟踪方法相比,该算法在计算效率方面具有优势。大量的仿真实验证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed Multi-Target Tracking with D-DBSCAN Clustering
This paper proposes a novel clustering-based distributed multi-target tracking algorithm over a sensor network. Each local sensor runs a joint probabilistic data association filter to obtain local state estimation. The estimates are communicated between connected sensors for track-totrack association and fusion. A novel distributed DBSCAN (D-DBSCAN) clustering algorithm is proposed to solve the track-to-track association problem. The proposed algorithm shows advantages in computational efficiency compared with conventional distributed multi-target tracking approaches. Extensive simulations provided substantial evidence for the effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信