多网格泊松求解器的并行性能

M. Sterk, R. Trobec
{"title":"多网格泊松求解器的并行性能","authors":"M. Sterk, R. Trobec","doi":"10.1109/ISPDC.2003.1267669","DOIUrl":null,"url":null,"abstract":"Practical implementation of the parallel multigrid method (MG) for solving the Poisson equation on arbitrary 3-dimensional domains using finite difference approximations and Neumann boundary conditions is described and compared to the SOR method. Some details on discretization are given and the resulting system of linear equations is analysed. The implemented program is based on the domain decomposition, uses MPI communication library and was tested on a workstation cluster based on 750 MHz Athlon processors and connected in a mesh with 100 Mb/s communication links. Speed-up is analysed for different numbers of processors and domain sizes. The parallel MG method achieves parallel efficiency greater than 0.6 for domains with more than 105 grid points and is faster than parallel SOR for domain sizes greater than 104 points.","PeriodicalId":368813,"journal":{"name":"Second International Symposium on Parallel and Distributed Computing, 2003. Proceedings.","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Parallel performances of a multigrid poisson solver\",\"authors\":\"M. Sterk, R. Trobec\",\"doi\":\"10.1109/ISPDC.2003.1267669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Practical implementation of the parallel multigrid method (MG) for solving the Poisson equation on arbitrary 3-dimensional domains using finite difference approximations and Neumann boundary conditions is described and compared to the SOR method. Some details on discretization are given and the resulting system of linear equations is analysed. The implemented program is based on the domain decomposition, uses MPI communication library and was tested on a workstation cluster based on 750 MHz Athlon processors and connected in a mesh with 100 Mb/s communication links. Speed-up is analysed for different numbers of processors and domain sizes. The parallel MG method achieves parallel efficiency greater than 0.6 for domains with more than 105 grid points and is faster than parallel SOR for domain sizes greater than 104 points.\",\"PeriodicalId\":368813,\"journal\":{\"name\":\"Second International Symposium on Parallel and Distributed Computing, 2003. Proceedings.\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Second International Symposium on Parallel and Distributed Computing, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPDC.2003.1267669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Second International Symposium on Parallel and Distributed Computing, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPDC.2003.1267669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文描述了利用有限差分近似和Neumann边界条件求解任意三维域泊松方程的并行多重网格方法的实际实现,并与SOR方法进行了比较。给出了离散化的一些细节,并对得到的线性方程组进行了分析。实现的程序基于域分解,使用MPI通信库,并在基于750mhz Athlon处理器的工作站集群上进行了测试,并以100mb /s的通信链路连接在网状结构中。对不同处理器数量和域大小的加速进行了分析。对于大于105个网格点的域,并行MG方法的并行效率大于0.6;对于大于104个网格点的域,并行MG方法的并行效率高于并行SOR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel performances of a multigrid poisson solver
Practical implementation of the parallel multigrid method (MG) for solving the Poisson equation on arbitrary 3-dimensional domains using finite difference approximations and Neumann boundary conditions is described and compared to the SOR method. Some details on discretization are given and the resulting system of linear equations is analysed. The implemented program is based on the domain decomposition, uses MPI communication library and was tested on a workstation cluster based on 750 MHz Athlon processors and connected in a mesh with 100 Mb/s communication links. Speed-up is analysed for different numbers of processors and domain sizes. The parallel MG method achieves parallel efficiency greater than 0.6 for domains with more than 105 grid points and is faster than parallel SOR for domain sizes greater than 104 points.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信