{"title":"一种表征无限颤栗的设定","authors":"Grzegorz Bobiński","doi":"10.1090/CONM/761/15308","DOIUrl":null,"url":null,"abstract":"We characterize pairs (Q,d) consisting of a quiver Q and a dimension vector d, such that over a given algebraically closed field k there are infinitely many representations of Q of dimension vector d. We also present an application of this result to the study of algebras with finitely many orbits with respect to the action of (the double product) of the group of units.","PeriodicalId":325430,"journal":{"name":"Advances in Representation Theory of\n Algebras","volume":"27 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A characterization of representation infinite\\n quiver settings\",\"authors\":\"Grzegorz Bobiński\",\"doi\":\"10.1090/CONM/761/15308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We characterize pairs (Q,d) consisting of a quiver Q and a dimension vector d, such that over a given algebraically closed field k there are infinitely many representations of Q of dimension vector d. We also present an application of this result to the study of algebras with finitely many orbits with respect to the action of (the double product) of the group of units.\",\"PeriodicalId\":325430,\"journal\":{\"name\":\"Advances in Representation Theory of\\n Algebras\",\"volume\":\"27 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Representation Theory of\\n Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/CONM/761/15308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Representation Theory of\n Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/CONM/761/15308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A characterization of representation infinite
quiver settings
We characterize pairs (Q,d) consisting of a quiver Q and a dimension vector d, such that over a given algebraically closed field k there are infinitely many representations of Q of dimension vector d. We also present an application of this result to the study of algebras with finitely many orbits with respect to the action of (the double product) of the group of units.