在停车场找到你的车

Mingmin Zhao, Ruipeng Gao, Jiaxu Zhu, Tao Ye, Fan Ye, Yizhou Wang, Kaigui Bian, Guojie Luo, Ming Zhang
{"title":"在停车场找到你的车","authors":"Mingmin Zhao, Ruipeng Gao, Jiaxu Zhu, Tao Ye, Fan Ye, Yizhou Wang, Kaigui Bian, Guojie Luo, Ming Zhang","doi":"10.1145/2668332.2668357","DOIUrl":null,"url":null,"abstract":"We present VeLoc, a smartphone-based vehicle localization approach that tracks the vehicle's parking location without GPS or WiFi signals. It uses only the embedded accelerometer and gyroscope sensors. VeLoc harnesses constraints imposed by the map and landmarks (e.g., speed bumps) recognized from inertial data, employs a Bayesian filtering framework to estimate the location of the vehicle. We have conducted experiments in three parking structures of different sizes and configurations, using three vehicles and three kinds of driving styles. We find that VeLoc can always localize the vehicle within 10m, which is sufficient for the driver to trigger a honk using the car key.","PeriodicalId":223777,"journal":{"name":"Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems","volume":"39 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"VeLoc: finding your car in the parking lot\",\"authors\":\"Mingmin Zhao, Ruipeng Gao, Jiaxu Zhu, Tao Ye, Fan Ye, Yizhou Wang, Kaigui Bian, Guojie Luo, Ming Zhang\",\"doi\":\"10.1145/2668332.2668357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present VeLoc, a smartphone-based vehicle localization approach that tracks the vehicle's parking location without GPS or WiFi signals. It uses only the embedded accelerometer and gyroscope sensors. VeLoc harnesses constraints imposed by the map and landmarks (e.g., speed bumps) recognized from inertial data, employs a Bayesian filtering framework to estimate the location of the vehicle. We have conducted experiments in three parking structures of different sizes and configurations, using three vehicles and three kinds of driving styles. We find that VeLoc can always localize the vehicle within 10m, which is sufficient for the driver to trigger a honk using the car key.\",\"PeriodicalId\":223777,\"journal\":{\"name\":\"Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems\",\"volume\":\"39 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2668332.2668357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2668332.2668357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们介绍了VeLoc,一种基于智能手机的车辆定位方法,可以在没有GPS或WiFi信号的情况下跟踪车辆的停车位置。它只使用嵌入式加速度计和陀螺仪传感器。VeLoc利用从惯性数据中识别出的地图和地标(如减速带)所施加的约束,采用贝叶斯滤波框架来估计车辆的位置。我们在三个不同尺寸和配置的停车结构中进行了实验,使用了三辆车和三种驾驶风格。我们发现VeLoc总是可以将车辆定位在10米以内,这足以让驾驶员使用车钥匙触发鸣笛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VeLoc: finding your car in the parking lot
We present VeLoc, a smartphone-based vehicle localization approach that tracks the vehicle's parking location without GPS or WiFi signals. It uses only the embedded accelerometer and gyroscope sensors. VeLoc harnesses constraints imposed by the map and landmarks (e.g., speed bumps) recognized from inertial data, employs a Bayesian filtering framework to estimate the location of the vehicle. We have conducted experiments in three parking structures of different sizes and configurations, using three vehicles and three kinds of driving styles. We find that VeLoc can always localize the vehicle within 10m, which is sufficient for the driver to trigger a honk using the car key.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信