功能选择为Android击键动力学

Dima El Zein, A. Kalakech
{"title":"功能选择为Android击键动力学","authors":"Dima El Zein, A. Kalakech","doi":"10.1109/ACIT.2018.8672706","DOIUrl":null,"url":null,"abstract":"Keystroke Dynamic Authentication is the way of authenticating users by analyzing their typing rhythm and behavior. While key hold time, inter-key interval time and flight time can be captured on all devices; applying Keystroke Dynamic Authentication to mobile devices allows capturing and analyzing additional keystroke features like finger area on screen, and pressure applied on the key. This paper aims to reduce the number of captured features without affecting the efficiency of the user prediction. For this purpose, we used a benchmark dataset and implemented 3 different filter feature selection methods to sort the features by their relevance. Sets of different sizes were created and tested against classification methods.","PeriodicalId":443170,"journal":{"name":"2018 International Arab Conference on Information Technology (ACIT)","volume":"36 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Feature Selection for Android Keystroke Dynamics\",\"authors\":\"Dima El Zein, A. Kalakech\",\"doi\":\"10.1109/ACIT.2018.8672706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Keystroke Dynamic Authentication is the way of authenticating users by analyzing their typing rhythm and behavior. While key hold time, inter-key interval time and flight time can be captured on all devices; applying Keystroke Dynamic Authentication to mobile devices allows capturing and analyzing additional keystroke features like finger area on screen, and pressure applied on the key. This paper aims to reduce the number of captured features without affecting the efficiency of the user prediction. For this purpose, we used a benchmark dataset and implemented 3 different filter feature selection methods to sort the features by their relevance. Sets of different sizes were created and tested against classification methods.\",\"PeriodicalId\":443170,\"journal\":{\"name\":\"2018 International Arab Conference on Information Technology (ACIT)\",\"volume\":\"36 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Arab Conference on Information Technology (ACIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACIT.2018.8672706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Arab Conference on Information Technology (ACIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIT.2018.8672706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

击键动态认证是一种通过分析用户的输入节奏和行为对用户进行认证的方法。键保持时间、键间间隔时间和飞行时间可以在所有设备上捕获;将击键动态认证应用于移动设备,可以捕获和分析额外的击键功能,如屏幕上的手指区域和键上施加的压力。本文的目标是在不影响用户预测效率的前提下减少捕获的特征数量。为此,我们使用了一个基准数据集,并实现了3种不同的过滤器特征选择方法,根据它们的相关性对特征进行排序。创建了不同大小的集合,并根据分类方法进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature Selection for Android Keystroke Dynamics
Keystroke Dynamic Authentication is the way of authenticating users by analyzing their typing rhythm and behavior. While key hold time, inter-key interval time and flight time can be captured on all devices; applying Keystroke Dynamic Authentication to mobile devices allows capturing and analyzing additional keystroke features like finger area on screen, and pressure applied on the key. This paper aims to reduce the number of captured features without affecting the efficiency of the user prediction. For this purpose, we used a benchmark dataset and implemented 3 different filter feature selection methods to sort the features by their relevance. Sets of different sizes were created and tested against classification methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信