基于Scilab的遗传神经网络优化研究

Baoyong Zhao, Yingjian Qi, Xingzhen Tao
{"title":"基于Scilab的遗传神经网络优化研究","authors":"Baoyong Zhao, Yingjian Qi, Xingzhen Tao","doi":"10.1109/OSSC.2011.6184705","DOIUrl":null,"url":null,"abstract":"Radial basis function (RBF) network is one of the significant neural networks. It has been used successfully in various fields. But in RBF network approximation algorithm, the initial value of the network weights, Gauss function center vector and broad-based vector is not easy to determine, and when these parameter choice is undeserved, RBF network approximation precision will decline and even the serious consequences of network spread will be produced. By using genetic algorithm in this paper, which can better realize RBF network parameter optimization, thereby increasing the accuracy of approximation. Scilab is open source software and has good simulation capabilities. Experiments using Scilab shows that the optimization method of genetic neural network is feasible and results are satisfied.","PeriodicalId":197116,"journal":{"name":"2011 IEEE International Workshop on Open-source Software for Scientific Computation","volume":"35 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimization research of genetic neural network based on Scilab\",\"authors\":\"Baoyong Zhao, Yingjian Qi, Xingzhen Tao\",\"doi\":\"10.1109/OSSC.2011.6184705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radial basis function (RBF) network is one of the significant neural networks. It has been used successfully in various fields. But in RBF network approximation algorithm, the initial value of the network weights, Gauss function center vector and broad-based vector is not easy to determine, and when these parameter choice is undeserved, RBF network approximation precision will decline and even the serious consequences of network spread will be produced. By using genetic algorithm in this paper, which can better realize RBF network parameter optimization, thereby increasing the accuracy of approximation. Scilab is open source software and has good simulation capabilities. Experiments using Scilab shows that the optimization method of genetic neural network is feasible and results are satisfied.\",\"PeriodicalId\":197116,\"journal\":{\"name\":\"2011 IEEE International Workshop on Open-source Software for Scientific Computation\",\"volume\":\"35 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Workshop on Open-source Software for Scientific Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OSSC.2011.6184705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Workshop on Open-source Software for Scientific Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OSSC.2011.6184705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

径向基函数(RBF)网络是一种重要的神经网络。它已成功地应用于各个领域。但在RBF网络逼近算法中,网络权值、高斯函数中心向量和基宽向量的初始值不容易确定,当这些参数选择不当时,RBF网络逼近精度会下降,甚至会产生网络传播的严重后果。本文通过采用遗传算法,可以更好地实现RBF网络参数的优化,从而提高了逼近的精度。Scilab是开源软件,具有良好的仿真能力。在Scilab上进行的实验表明,遗传神经网络优化方法是可行的,结果令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization research of genetic neural network based on Scilab
Radial basis function (RBF) network is one of the significant neural networks. It has been used successfully in various fields. But in RBF network approximation algorithm, the initial value of the network weights, Gauss function center vector and broad-based vector is not easy to determine, and when these parameter choice is undeserved, RBF network approximation precision will decline and even the serious consequences of network spread will be produced. By using genetic algorithm in this paper, which can better realize RBF network parameter optimization, thereby increasing the accuracy of approximation. Scilab is open source software and has good simulation capabilities. Experiments using Scilab shows that the optimization method of genetic neural network is feasible and results are satisfied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信