先进Meta-PSO

Christian Veenhuis
{"title":"先进Meta-PSO","authors":"Christian Veenhuis","doi":"10.1109/HIS.2006.10","DOIUrl":null,"url":null,"abstract":"One issue in applying PSO is to find a good working set of parameters. The standard settings are often work sufficiently but don¿t exhaust the possibilities of PSO. This paper proposes an extended Meta-PSO approach to optimize the PSO parameters as well as the neighborhood topology for a given problem by PSO itself. It is applied to four typical benchmark functions known from literature. The good results indicate that PSO is capable of optimizing itself.","PeriodicalId":150732,"journal":{"name":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","volume":"49 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Advanced Meta-PSO\",\"authors\":\"Christian Veenhuis\",\"doi\":\"10.1109/HIS.2006.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One issue in applying PSO is to find a good working set of parameters. The standard settings are often work sufficiently but don¿t exhaust the possibilities of PSO. This paper proposes an extended Meta-PSO approach to optimize the PSO parameters as well as the neighborhood topology for a given problem by PSO itself. It is applied to four typical benchmark functions known from literature. The good results indicate that PSO is capable of optimizing itself.\",\"PeriodicalId\":150732,\"journal\":{\"name\":\"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)\",\"volume\":\"49 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIS.2006.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2006.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

应用粒子群算法的一个问题是找到一个好的工作参数集。标准设置通常是足够有效的,但并没有穷尽PSO的可能性。本文提出了一种扩展的元粒子群算法,通过粒子群本身对给定问题的粒子群参数和邻域拓扑进行优化。将其应用于文献中已知的四个典型基准函数。结果表明,粒子群算法具有自我优化的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced Meta-PSO
One issue in applying PSO is to find a good working set of parameters. The standard settings are often work sufficiently but don¿t exhaust the possibilities of PSO. This paper proposes an extended Meta-PSO approach to optimize the PSO parameters as well as the neighborhood topology for a given problem by PSO itself. It is applied to four typical benchmark functions known from literature. The good results indicate that PSO is capable of optimizing itself.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信