基于自适应神经模糊接口系统(ANFIS)的并网双光伏LLC变流器控制

Sumana Ghosh, Abdullah Alhatlani, Reza Rezaii, I. Batarseh
{"title":"基于自适应神经模糊接口系统(ANFIS)的并网双光伏LLC变流器控制","authors":"Sumana Ghosh, Abdullah Alhatlani, Reza Rezaii, I. Batarseh","doi":"10.1109/IECON48115.2021.9589869","DOIUrl":null,"url":null,"abstract":"This paper proposes a double Maximum Power Point Tracking (MPPT) algorithm for achieving maximum efficiency of a grid-tied phase-shifted dual-PV LLC converter using the Adaptive Neuro-Fuzzy Interface System (ANFIS). The algorithm can extract maximum power from Photovoltaic (PV) panels under various weather conditions and partial shading. This dual MPPT algorithm generates switching frequency and phase shift through ANFIS to regulate the power flow using both Frequency Shift Modulation (FSM) and phase-shift modulation (PSM) techniques simultaneously. Here the ANFIS model is developed using the LLC converter’s input-output data set for each PV panel to train the neural network while the fuzzy rules ensure the optimum output using different membership functions. The second controller on the grid side maintains the DC link voltage to a fixed level as well as ensures grid power injection with minimal harmonic distortion. Derivation of this dual-MPPT algorithm and verification of the proposed closed-loop system is presented in this paper.","PeriodicalId":443337,"journal":{"name":"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society","volume":"13 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Control of Grid-tied Dual-PV LLC Converter using Adaptive Neuro Fuzzy Interface System (ANFIS)\",\"authors\":\"Sumana Ghosh, Abdullah Alhatlani, Reza Rezaii, I. Batarseh\",\"doi\":\"10.1109/IECON48115.2021.9589869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a double Maximum Power Point Tracking (MPPT) algorithm for achieving maximum efficiency of a grid-tied phase-shifted dual-PV LLC converter using the Adaptive Neuro-Fuzzy Interface System (ANFIS). The algorithm can extract maximum power from Photovoltaic (PV) panels under various weather conditions and partial shading. This dual MPPT algorithm generates switching frequency and phase shift through ANFIS to regulate the power flow using both Frequency Shift Modulation (FSM) and phase-shift modulation (PSM) techniques simultaneously. Here the ANFIS model is developed using the LLC converter’s input-output data set for each PV panel to train the neural network while the fuzzy rules ensure the optimum output using different membership functions. The second controller on the grid side maintains the DC link voltage to a fixed level as well as ensures grid power injection with minimal harmonic distortion. Derivation of this dual-MPPT algorithm and verification of the proposed closed-loop system is presented in this paper.\",\"PeriodicalId\":443337,\"journal\":{\"name\":\"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"13 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON48115.2021.9589869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON48115.2021.9589869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种双最大功率点跟踪(MPPT)算法,利用自适应神经模糊接口系统(ANFIS)实现并网相移双pv LLC变换器的最大效率。该算法可以在各种天气条件和部分遮阳条件下提取光伏板的最大功率。这种双MPPT算法通过ANFIS产生开关频率和相移,同时使用移频调制(FSM)和移相调制(PSM)技术来调节功率流。利用LLC变换器的每块光伏板的输入输出数据集建立ANFIS模型来训练神经网络,同时利用不同的隶属度函数建立模糊规则来保证最优输出。电网侧的第二个控制器将直流链路电压维持在固定水平,并确保电网注入功率具有最小的谐波失真。本文给出了该双mppt算法的推导和闭环系统的验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control of Grid-tied Dual-PV LLC Converter using Adaptive Neuro Fuzzy Interface System (ANFIS)
This paper proposes a double Maximum Power Point Tracking (MPPT) algorithm for achieving maximum efficiency of a grid-tied phase-shifted dual-PV LLC converter using the Adaptive Neuro-Fuzzy Interface System (ANFIS). The algorithm can extract maximum power from Photovoltaic (PV) panels under various weather conditions and partial shading. This dual MPPT algorithm generates switching frequency and phase shift through ANFIS to regulate the power flow using both Frequency Shift Modulation (FSM) and phase-shift modulation (PSM) techniques simultaneously. Here the ANFIS model is developed using the LLC converter’s input-output data set for each PV panel to train the neural network while the fuzzy rules ensure the optimum output using different membership functions. The second controller on the grid side maintains the DC link voltage to a fixed level as well as ensures grid power injection with minimal harmonic distortion. Derivation of this dual-MPPT algorithm and verification of the proposed closed-loop system is presented in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信