SPHINX-II中基于电话依赖的VQ码本和自适应语言模型改进语音识别性能

M. Hwang, R. Rosenfeld, Eric H. Thayer, M. Ravishankar, L. Chase, R. Weide, Xuedong Huang, F. Alleva
{"title":"SPHINX-II中基于电话依赖的VQ码本和自适应语言模型改进语音识别性能","authors":"M. Hwang, R. Rosenfeld, Eric H. Thayer, M. Ravishankar, L. Chase, R. Weide, Xuedong Huang, F. Alleva","doi":"10.1109/ICASSP.1994.389235","DOIUrl":null,"url":null,"abstract":"This paper presents improvements in acoustic and language modeling for automatic speech recognition. Specifically, semi-continuous HMMs (SCHMMs) with phone-dependent VQ codebooks are presented and incorporated into the SPHINX-II speech recognition system. The phone-dependent VQ codebooks relax the density-tying constraint in SCHMMs in order to obtain more detailed models. A 6% error rate reduction was achieved on the speaker-independent 20000-word Wall Street Journal (WSJ) task. Dynamic adaptation of the language model in the context of long documents is also explored. A maximum entropy framework is used to exploit long distance trigrams and trigger effects. A 10%-15% word error rate reduction is reported on the same WSJ task using the adaptive language modeling technique.<<ETX>>","PeriodicalId":290798,"journal":{"name":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"42 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Improving speech recognition performance via phone-dependent VQ codebooks and adaptive language models in SPHINX-II\",\"authors\":\"M. Hwang, R. Rosenfeld, Eric H. Thayer, M. Ravishankar, L. Chase, R. Weide, Xuedong Huang, F. Alleva\",\"doi\":\"10.1109/ICASSP.1994.389235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents improvements in acoustic and language modeling for automatic speech recognition. Specifically, semi-continuous HMMs (SCHMMs) with phone-dependent VQ codebooks are presented and incorporated into the SPHINX-II speech recognition system. The phone-dependent VQ codebooks relax the density-tying constraint in SCHMMs in order to obtain more detailed models. A 6% error rate reduction was achieved on the speaker-independent 20000-word Wall Street Journal (WSJ) task. Dynamic adaptation of the language model in the context of long documents is also explored. A maximum entropy framework is used to exploit long distance trigrams and trigger effects. A 10%-15% word error rate reduction is reported on the same WSJ task using the adaptive language modeling technique.<<ETX>>\",\"PeriodicalId\":290798,\"journal\":{\"name\":\"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing\",\"volume\":\"42 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1994.389235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1994.389235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

本文提出了用于自动语音识别的声学和语言建模的改进。具体而言,提出了具有电话依赖VQ码本的半连续hmm (schmm),并将其纳入SPHINX-II语音识别系统。依赖于手机的VQ码本放宽了schmm中的密度约束,以获得更详细的模型。在独立于说话人的2万字《华尔街日报》任务中,错误率降低了6%。本文还探讨了长文档语境下语言模型的动态适应。最大熵框架用于开发长距离三元组和触发效应。据报道,使用自适应语言建模技术,在相同的WSJ任务上,单词错误率降低了10%-15%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving speech recognition performance via phone-dependent VQ codebooks and adaptive language models in SPHINX-II
This paper presents improvements in acoustic and language modeling for automatic speech recognition. Specifically, semi-continuous HMMs (SCHMMs) with phone-dependent VQ codebooks are presented and incorporated into the SPHINX-II speech recognition system. The phone-dependent VQ codebooks relax the density-tying constraint in SCHMMs in order to obtain more detailed models. A 6% error rate reduction was achieved on the speaker-independent 20000-word Wall Street Journal (WSJ) task. Dynamic adaptation of the language model in the context of long documents is also explored. A maximum entropy framework is used to exploit long distance trigrams and trigger effects. A 10%-15% word error rate reduction is reported on the same WSJ task using the adaptive language modeling technique.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信