改进概率神经网络均衡器的中心约简算法

J. Young, A. Zaknich, Y. Attkiouzel
{"title":"改进概率神经网络均衡器的中心约简算法","authors":"J. Young, A. Zaknich, Y. Attkiouzel","doi":"10.1109/IJCNN.2001.938465","DOIUrl":null,"url":null,"abstract":"The applicability of the modified probabilistic neural network to channel equalization can be severely limited by the size of the network. The size of the network grows exponentially with the order of the channel and the dimension of the input vectors. As a result, the standard network is practical only for low order channels with small input alphabet size. An algorithm is proposed to alleviate such an undesirable constraint by finding a much smaller network representation with a similar decision surface.","PeriodicalId":346955,"journal":{"name":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","volume":"340 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Center reduction algorithm for the modified probabilistic neural network equalizer\",\"authors\":\"J. Young, A. Zaknich, Y. Attkiouzel\",\"doi\":\"10.1109/IJCNN.2001.938465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The applicability of the modified probabilistic neural network to channel equalization can be severely limited by the size of the network. The size of the network grows exponentially with the order of the channel and the dimension of the input vectors. As a result, the standard network is practical only for low order channels with small input alphabet size. An algorithm is proposed to alleviate such an undesirable constraint by finding a much smaller network representation with a similar decision surface.\",\"PeriodicalId\":346955,\"journal\":{\"name\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"volume\":\"340 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2001.938465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2001.938465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

改进的概率神经网络对信道均衡的适用性受到网络规模的严重限制。网络的大小随着通道的顺序和输入向量的维数呈指数增长。因此,标准网络仅适用于具有小输入字母大小的低阶信道。提出了一种算法,通过寻找具有相似决策面的更小的网络表示来缓解这种不良约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Center reduction algorithm for the modified probabilistic neural network equalizer
The applicability of the modified probabilistic neural network to channel equalization can be severely limited by the size of the network. The size of the network grows exponentially with the order of the channel and the dimension of the input vectors. As a result, the standard network is practical only for low order channels with small input alphabet size. An algorithm is proposed to alleviate such an undesirable constraint by finding a much smaller network representation with a similar decision surface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信