基于EMBET的测量数据融合方法

Kechang Qian, Ying Wan, Youchen Fan, Dapeng Xiong
{"title":"基于EMBET的测量数据融合方法","authors":"Kechang Qian, Ying Wan, Youchen Fan, Dapeng Xiong","doi":"10.1109/ICCCS52626.2021.9449219","DOIUrl":null,"url":null,"abstract":"The use of data fusion algorithms for fusion processing of the obtained multivariate measurement data is a common method to improve measurement accuracy. This paper designs a multivariate measurement data fusion method based on the principle of EMBET, which avoids the limitation of the conventional EMBET method for measuring equipment error models and effectively improves the accuracy of multivariate measurement data fusion. The effectiveness of this method is verified by measured data.","PeriodicalId":376290,"journal":{"name":"2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS)","volume":"50 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Method of Measuring Data Fusion Based on EMBET\",\"authors\":\"Kechang Qian, Ying Wan, Youchen Fan, Dapeng Xiong\",\"doi\":\"10.1109/ICCCS52626.2021.9449219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of data fusion algorithms for fusion processing of the obtained multivariate measurement data is a common method to improve measurement accuracy. This paper designs a multivariate measurement data fusion method based on the principle of EMBET, which avoids the limitation of the conventional EMBET method for measuring equipment error models and effectively improves the accuracy of multivariate measurement data fusion. The effectiveness of this method is verified by measured data.\",\"PeriodicalId\":376290,\"journal\":{\"name\":\"2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS)\",\"volume\":\"50 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCS52626.2021.9449219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCS52626.2021.9449219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用数据融合算法对得到的多变量测量数据进行融合处理是提高测量精度的常用方法。本文设计了一种基于EMBET原理的多变量测量数据融合方法,避免了传统EMBET方法对测量设备误差模型的限制,有效提高了多变量测量数据融合的精度。实测数据验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Method of Measuring Data Fusion Based on EMBET
The use of data fusion algorithms for fusion processing of the obtained multivariate measurement data is a common method to improve measurement accuracy. This paper designs a multivariate measurement data fusion method based on the principle of EMBET, which avoids the limitation of the conventional EMBET method for measuring equipment error models and effectively improves the accuracy of multivariate measurement data fusion. The effectiveness of this method is verified by measured data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信