求解scc模型的随机分支策略

Rongzhang Cao, Yanguang Chen, Wenzhi Gao, Jianjun Gao, Yantao Zhang, Chunling Lu, Dongdong Ge
{"title":"求解scc模型的随机分支策略","authors":"Rongzhang Cao, Yanguang Chen, Wenzhi Gao, Jianjun Gao, Yantao Zhang, Chunling Lu, Dongdong Ge","doi":"10.1109/ICPET55165.2022.9918362","DOIUrl":null,"url":null,"abstract":"The Branch-and-Bound (BnB) method is the fundamental solution framework for solving large-scale security-constrained unit commitment (SCUC) problem. Due to the central role variable selection rules play in such a solution procedure, this paper develops some efficient methods to actively learn the variable selection rule. Instead of using a pre-fixed rule, we propose to use a randomized strategy to select the branching variables. In such a strategy, the probability associated with the variable selection is learned from the historical solutions generated by the similar problems with different parametric patterns. To accelerate the learning procedure, we further propose to use either Grid Search or Bayesian Optimization technique to learn such a probability distribution. Using the randomly generated SCUC problems, we evaluate our randomized variable selection rule which incorporates the Most Infeasible Branching rule, Least Infeasible Branching rule, Pseudocost Branching rule, and the CPLEX Adaptive Branching rule as a basis. The preliminary computational results show that our proposed method gives remarkable improvements in solving the SCUC problem.","PeriodicalId":355634,"journal":{"name":"2022 4th International Conference on Power and Energy Technology (ICPET)","volume":"351 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Randomized Branching Strategy in Solving SCUC Model\",\"authors\":\"Rongzhang Cao, Yanguang Chen, Wenzhi Gao, Jianjun Gao, Yantao Zhang, Chunling Lu, Dongdong Ge\",\"doi\":\"10.1109/ICPET55165.2022.9918362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Branch-and-Bound (BnB) method is the fundamental solution framework for solving large-scale security-constrained unit commitment (SCUC) problem. Due to the central role variable selection rules play in such a solution procedure, this paper develops some efficient methods to actively learn the variable selection rule. Instead of using a pre-fixed rule, we propose to use a randomized strategy to select the branching variables. In such a strategy, the probability associated with the variable selection is learned from the historical solutions generated by the similar problems with different parametric patterns. To accelerate the learning procedure, we further propose to use either Grid Search or Bayesian Optimization technique to learn such a probability distribution. Using the randomly generated SCUC problems, we evaluate our randomized variable selection rule which incorporates the Most Infeasible Branching rule, Least Infeasible Branching rule, Pseudocost Branching rule, and the CPLEX Adaptive Branching rule as a basis. The preliminary computational results show that our proposed method gives remarkable improvements in solving the SCUC problem.\",\"PeriodicalId\":355634,\"journal\":{\"name\":\"2022 4th International Conference on Power and Energy Technology (ICPET)\",\"volume\":\"351 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th International Conference on Power and Energy Technology (ICPET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPET55165.2022.9918362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Power and Energy Technology (ICPET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPET55165.2022.9918362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分支定界(Branch-and-Bound, BnB)方法是求解大规模安全约束单元承诺问题的基本求解框架。由于变量选择规则在求解过程中的核心作用,本文开发了一些有效的方法来主动学习变量选择规则。我们建议使用随机策略来选择分支变量,而不是使用预先确定的规则。在这种策略中,与变量选择相关的概率是从具有不同参数模式的类似问题产生的历史解中学习的。为了加速学习过程,我们进一步提出使用网格搜索或贝叶斯优化技术来学习这种概率分布。利用随机生成的scc问题,以最不可行分支规则、最小不可行分支规则、伪代价分支规则和CPLEX自适应分支规则为基础,对随机变量选择规则进行了评价。初步的计算结果表明,本文提出的方法在解决scc问题方面有显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Randomized Branching Strategy in Solving SCUC Model
The Branch-and-Bound (BnB) method is the fundamental solution framework for solving large-scale security-constrained unit commitment (SCUC) problem. Due to the central role variable selection rules play in such a solution procedure, this paper develops some efficient methods to actively learn the variable selection rule. Instead of using a pre-fixed rule, we propose to use a randomized strategy to select the branching variables. In such a strategy, the probability associated with the variable selection is learned from the historical solutions generated by the similar problems with different parametric patterns. To accelerate the learning procedure, we further propose to use either Grid Search or Bayesian Optimization technique to learn such a probability distribution. Using the randomly generated SCUC problems, we evaluate our randomized variable selection rule which incorporates the Most Infeasible Branching rule, Least Infeasible Branching rule, Pseudocost Branching rule, and the CPLEX Adaptive Branching rule as a basis. The preliminary computational results show that our proposed method gives remarkable improvements in solving the SCUC problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信