R. Vehkalahti, Wittawat Kositwattanarerk, F. Oggier
{"title":"从数域和除法代数构造格","authors":"R. Vehkalahti, Wittawat Kositwattanarerk, F. Oggier","doi":"10.1109/ISIT.2014.6875249","DOIUrl":null,"url":null,"abstract":"There is a rich theory of relations between lattices and linear codes over finite fields. However, this theory has been developed mostly with lattice codes for the Gaussian channel in mind. In particular, different versions of what is called Construction A have connected the Hamming distance of the linear code to the Euclidean structure of the lattice. This paper concentrates on developing a similar theory, but for fading channel coding instead. First, two versions of Construction A from number fields are given. These are then extended to division algebra lattices. Instead of the Euclidean distance, the Hamming distance of the finite codes is connected to the product distance of the resulting lattices, that is the minimum product distance and the minimum determinant respectively.","PeriodicalId":127191,"journal":{"name":"2014 IEEE International Symposium on Information Theory","volume":"34 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Constructions a of lattices from number fields and division algebras\",\"authors\":\"R. Vehkalahti, Wittawat Kositwattanarerk, F. Oggier\",\"doi\":\"10.1109/ISIT.2014.6875249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a rich theory of relations between lattices and linear codes over finite fields. However, this theory has been developed mostly with lattice codes for the Gaussian channel in mind. In particular, different versions of what is called Construction A have connected the Hamming distance of the linear code to the Euclidean structure of the lattice. This paper concentrates on developing a similar theory, but for fading channel coding instead. First, two versions of Construction A from number fields are given. These are then extended to division algebra lattices. Instead of the Euclidean distance, the Hamming distance of the finite codes is connected to the product distance of the resulting lattices, that is the minimum product distance and the minimum determinant respectively.\",\"PeriodicalId\":127191,\"journal\":{\"name\":\"2014 IEEE International Symposium on Information Theory\",\"volume\":\"34 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2014.6875249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2014.6875249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Constructions a of lattices from number fields and division algebras
There is a rich theory of relations between lattices and linear codes over finite fields. However, this theory has been developed mostly with lattice codes for the Gaussian channel in mind. In particular, different versions of what is called Construction A have connected the Hamming distance of the linear code to the Euclidean structure of the lattice. This paper concentrates on developing a similar theory, but for fading channel coding instead. First, two versions of Construction A from number fields are given. These are then extended to division algebra lattices. Instead of the Euclidean distance, the Hamming distance of the finite codes is connected to the product distance of the resulting lattices, that is the minimum product distance and the minimum determinant respectively.