使用多种建模技术的个性化虚拟学习环境

R. R. Maaliw
{"title":"使用多种建模技术的个性化虚拟学习环境","authors":"R. R. Maaliw","doi":"10.1109/uemcon53757.2021.9666645","DOIUrl":null,"url":null,"abstract":"Student learning optimization is one of the main goals of education. A conventional e-learning system fails to accomplish its true purpose due to the lack or absence of personalization features. This paper presents an end-to-end approach for supporting students’ diverse needs by classifying their learning styles in a virtual learning environment (VLE) and embedding the discovered knowledge in an adaptive e-learning system prototype. Furthermore, we validated different models’ accuracies and comparative consistencies to manual methods using 704,592 interactions log data of 898 learners. Quantitative results show that the Support Vector Machine (SVM) achieves cross-validated accuracies of 88%, 86%, and 87% (processing, perception & input) of the Felder-Silverman Learning Style Model (FSLSM) and the Decision Tree (DT) for the understanding dimension with 86% accuracy.","PeriodicalId":127072,"journal":{"name":"2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"183 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Personalized Virtual Learning Environment Using Multiple Modeling Techniques\",\"authors\":\"R. R. Maaliw\",\"doi\":\"10.1109/uemcon53757.2021.9666645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Student learning optimization is one of the main goals of education. A conventional e-learning system fails to accomplish its true purpose due to the lack or absence of personalization features. This paper presents an end-to-end approach for supporting students’ diverse needs by classifying their learning styles in a virtual learning environment (VLE) and embedding the discovered knowledge in an adaptive e-learning system prototype. Furthermore, we validated different models’ accuracies and comparative consistencies to manual methods using 704,592 interactions log data of 898 learners. Quantitative results show that the Support Vector Machine (SVM) achieves cross-validated accuracies of 88%, 86%, and 87% (processing, perception & input) of the Felder-Silverman Learning Style Model (FSLSM) and the Decision Tree (DT) for the understanding dimension with 86% accuracy.\",\"PeriodicalId\":127072,\"journal\":{\"name\":\"2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"volume\":\"183 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/uemcon53757.2021.9666645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/uemcon53757.2021.9666645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

学生学习优化是教育的主要目标之一。由于缺乏个性化功能,传统的电子学习系统无法实现其真正的目的。本文提出了一种端到端的方法,通过在虚拟学习环境(VLE)中对学生的学习风格进行分类,并将发现的知识嵌入到自适应电子学习系统原型中,来支持学生的多样化需求。此外,我们使用898个学习者的704,592个交互日志数据验证了不同模型的准确性和与手动方法的比较一致性。定量结果表明,支持向量机(SVM)与Felder-Silverman学习风格模型(FSLSM)和决策树(DT)在理解维度上的交叉验证准确率分别为88%、86%和87%(处理、感知和输入),准确率为86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Personalized Virtual Learning Environment Using Multiple Modeling Techniques
Student learning optimization is one of the main goals of education. A conventional e-learning system fails to accomplish its true purpose due to the lack or absence of personalization features. This paper presents an end-to-end approach for supporting students’ diverse needs by classifying their learning styles in a virtual learning environment (VLE) and embedding the discovered knowledge in an adaptive e-learning system prototype. Furthermore, we validated different models’ accuracies and comparative consistencies to manual methods using 704,592 interactions log data of 898 learners. Quantitative results show that the Support Vector Machine (SVM) achieves cross-validated accuracies of 88%, 86%, and 87% (processing, perception & input) of the Felder-Silverman Learning Style Model (FSLSM) and the Decision Tree (DT) for the understanding dimension with 86% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信