基于改进K-Means算法的Web数据库异常数据检测方法

Linghong Lai
{"title":"基于改进K-Means算法的Web数据库异常数据检测方法","authors":"Linghong Lai","doi":"10.1109/PHM-Yantai55411.2022.9942021","DOIUrl":null,"url":null,"abstract":"A k-means clustering based anomaly detection method for software test data is proposed to enhance the detection ability of software test anomaly data. The distribution document model of abnormal teaching data is established based on portable multi-dimensional control software; Identifying software parameters based on semantic features and extracting feature quantities of software related information; Clustering of abnormal data by feature combination analysis according to feature distribution; Through the fusion of abnormal feature distribution, the joint detection of multi-dimensional features is completed; K-means clustering is used to obtain the optimal data combination and complete data anomaly detection. The experimental results show that the advantages of this method are good performance and accuracy.","PeriodicalId":315994,"journal":{"name":"2022 Global Reliability and Prognostics and Health Management (PHM-Yantai)","volume":"48 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abnormal Data Detection Method of Web Database Based on Improved K-Means Algorithm\",\"authors\":\"Linghong Lai\",\"doi\":\"10.1109/PHM-Yantai55411.2022.9942021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A k-means clustering based anomaly detection method for software test data is proposed to enhance the detection ability of software test anomaly data. The distribution document model of abnormal teaching data is established based on portable multi-dimensional control software; Identifying software parameters based on semantic features and extracting feature quantities of software related information; Clustering of abnormal data by feature combination analysis according to feature distribution; Through the fusion of abnormal feature distribution, the joint detection of multi-dimensional features is completed; K-means clustering is used to obtain the optimal data combination and complete data anomaly detection. The experimental results show that the advantages of this method are good performance and accuracy.\",\"PeriodicalId\":315994,\"journal\":{\"name\":\"2022 Global Reliability and Prognostics and Health Management (PHM-Yantai)\",\"volume\":\"48 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Global Reliability and Prognostics and Health Management (PHM-Yantai)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PHM-Yantai55411.2022.9942021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Global Reliability and Prognostics and Health Management (PHM-Yantai)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PHM-Yantai55411.2022.9942021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高软件测试异常数据的检测能力,提出了一种基于k均值聚类的软件测试数据异常检测方法。基于便携式多维控制软件,建立了教学异常数据的分布文档模型;基于语义特征识别软件参数,提取软件相关信息的特征量;根据特征分布对异常数据进行特征组合分析聚类;通过对异常特征分布的融合,完成多维特征的联合检测;采用K-means聚类获得最优数据组合,完成数据异常检测。实验结果表明,该方法具有性能好、精度高的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abnormal Data Detection Method of Web Database Based on Improved K-Means Algorithm
A k-means clustering based anomaly detection method for software test data is proposed to enhance the detection ability of software test anomaly data. The distribution document model of abnormal teaching data is established based on portable multi-dimensional control software; Identifying software parameters based on semantic features and extracting feature quantities of software related information; Clustering of abnormal data by feature combination analysis according to feature distribution; Through the fusion of abnormal feature distribution, the joint detection of multi-dimensional features is completed; K-means clustering is used to obtain the optimal data combination and complete data anomaly detection. The experimental results show that the advantages of this method are good performance and accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信