一种保协方差的两两投影降维方法

Xiaoming Liu, Zhaohui Wang, Zhilin Feng, Jinshan Tang
{"title":"一种保协方差的两两投影降维方法","authors":"Xiaoming Liu, Zhaohui Wang, Zhilin Feng, Jinshan Tang","doi":"10.1109/ICDM.2007.65","DOIUrl":null,"url":null,"abstract":"Dimension reduction is critical in many areas of pattern classification and machine learning and many discriminant analysis algorithms have been proposed. In this paper, a Pairwise Covariance-preserving Projection Method (PCPM) is proposed for dimension reduction. PCPM maximizes the class discrimination and also preserves approximately the pairwise class covariances. The optimization involved in PCPM can be solved directly by eigenvalues decomposition. Our theoretical and empirical analysis reveals the relationship between PCPM and Linear Discriminant Analysis (LDA), Sliced Average Variance Estimator (SAVE), Heteroscedastic Discriminant Analysis (HDA) and Covariance preserving Projection Method (CPM). PCPM can utilize class mean and class covariance information at the same time. Furthermore, pairwise weight scheme can be incorporated naturally with the pairwise summarization form. The proposed methods are evaluated by both synthetic and real-world datasets.","PeriodicalId":233758,"journal":{"name":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","volume":"69 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Pairwise Covariance-Preserving Projection Method for Dimension Reduction\",\"authors\":\"Xiaoming Liu, Zhaohui Wang, Zhilin Feng, Jinshan Tang\",\"doi\":\"10.1109/ICDM.2007.65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dimension reduction is critical in many areas of pattern classification and machine learning and many discriminant analysis algorithms have been proposed. In this paper, a Pairwise Covariance-preserving Projection Method (PCPM) is proposed for dimension reduction. PCPM maximizes the class discrimination and also preserves approximately the pairwise class covariances. The optimization involved in PCPM can be solved directly by eigenvalues decomposition. Our theoretical and empirical analysis reveals the relationship between PCPM and Linear Discriminant Analysis (LDA), Sliced Average Variance Estimator (SAVE), Heteroscedastic Discriminant Analysis (HDA) and Covariance preserving Projection Method (CPM). PCPM can utilize class mean and class covariance information at the same time. Furthermore, pairwise weight scheme can be incorporated naturally with the pairwise summarization form. The proposed methods are evaluated by both synthetic and real-world datasets.\",\"PeriodicalId\":233758,\"journal\":{\"name\":\"Seventh IEEE International Conference on Data Mining (ICDM 2007)\",\"volume\":\"69 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh IEEE International Conference on Data Mining (ICDM 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2007.65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2007.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

降维在模式分类和机器学习的许多领域都是至关重要的,已经提出了许多判别分析算法。本文提出了一种用于降维的成对协方差保持投影法。PCPM最大限度地提高了类歧视,并近似地保留了成对的类协方差。PCPM所涉及的优化问题可以通过特征值分解直接求解。我们的理论和实证分析揭示了PCPM与线性判别分析(LDA)、切片平均方差估计(SAVE)、异方差判别分析(HDA)和协方差保持投影法(CPM)之间的关系。PCPM可以同时利用类均值和类协方差信息。此外,两两权值方案可以与两两汇总形式自然结合。所提出的方法通过合成数据集和实际数据集进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Pairwise Covariance-Preserving Projection Method for Dimension Reduction
Dimension reduction is critical in many areas of pattern classification and machine learning and many discriminant analysis algorithms have been proposed. In this paper, a Pairwise Covariance-preserving Projection Method (PCPM) is proposed for dimension reduction. PCPM maximizes the class discrimination and also preserves approximately the pairwise class covariances. The optimization involved in PCPM can be solved directly by eigenvalues decomposition. Our theoretical and empirical analysis reveals the relationship between PCPM and Linear Discriminant Analysis (LDA), Sliced Average Variance Estimator (SAVE), Heteroscedastic Discriminant Analysis (HDA) and Covariance preserving Projection Method (CPM). PCPM can utilize class mean and class covariance information at the same time. Furthermore, pairwise weight scheme can be incorporated naturally with the pairwise summarization form. The proposed methods are evaluated by both synthetic and real-world datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信