最大熵模型在可替换系统可靠性中心维护方案中的应用。

O. P. Gaona, D. González-González, Marco A. Fuentes-Huerta, R. Praga-Alejo
{"title":"最大熵模型在可替换系统可靠性中心维护方案中的应用。","authors":"O. P. Gaona, D. González-González, Marco A. Fuentes-Huerta, R. Praga-Alejo","doi":"10.1109/ICMEAE.2019.00033","DOIUrl":null,"url":null,"abstract":"Based on methodologies of variational calculus and differential entropy, we propose in this work a non-parametric model that provides a robust estimation of reliability to be used in a RCM scheme. A Weibull analysis is presented first in a case study within the usual RCM schemes. If the sample of data is severly reduced the weibull analysis lost preciscion, impacting in the RCM scheme. To solve this limitation, a maximum entropy aproach is propoused.Differential entropy has been shown as a solid tool to model the response of a random variable when reduced sample size information is available. We take advantage of the formalism of the variational calculus to express a functional that obeys the Euler-Lagrange equations and supported by the Kolmogorov axioms, we extract a generalized non-parametric probability density. By subjecting this density to appropriate boundary conditions in terms of the first moments of the generalized probability density.","PeriodicalId":422872,"journal":{"name":"2019 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)","volume":"26 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Maximum entropy model applied to Reliability Centered Maintenance scheme for replaceable systems.\",\"authors\":\"O. P. Gaona, D. González-González, Marco A. Fuentes-Huerta, R. Praga-Alejo\",\"doi\":\"10.1109/ICMEAE.2019.00033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on methodologies of variational calculus and differential entropy, we propose in this work a non-parametric model that provides a robust estimation of reliability to be used in a RCM scheme. A Weibull analysis is presented first in a case study within the usual RCM schemes. If the sample of data is severly reduced the weibull analysis lost preciscion, impacting in the RCM scheme. To solve this limitation, a maximum entropy aproach is propoused.Differential entropy has been shown as a solid tool to model the response of a random variable when reduced sample size information is available. We take advantage of the formalism of the variational calculus to express a functional that obeys the Euler-Lagrange equations and supported by the Kolmogorov axioms, we extract a generalized non-parametric probability density. By subjecting this density to appropriate boundary conditions in terms of the first moments of the generalized probability density.\",\"PeriodicalId\":422872,\"journal\":{\"name\":\"2019 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)\",\"volume\":\"26 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMEAE.2019.00033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEAE.2019.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于变分微积分和微分熵的方法,我们在这项工作中提出了一个非参数模型,该模型提供了RCM方案中使用的可靠性的鲁棒估计。威布尔分析首先在通常的RCM方案中的一个案例研究中提出。如果数据样本严重减少,威布尔分析将失去精度,影响RCM方案。为了解决这一限制,提出了一种最大熵方法。微分熵已被证明是一个可靠的工具,以模拟一个随机变量的响应时,减少了样本大小的信息是可用的。利用变分微积分的形式化表达了一个服从欧拉-拉格朗日方程的泛函,并在Kolmogorov公理的支持下,我们提取了一个广义的非参数概率密度。通过根据广义概率密度的一阶矩使该密度具有适当的边界条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum entropy model applied to Reliability Centered Maintenance scheme for replaceable systems.
Based on methodologies of variational calculus and differential entropy, we propose in this work a non-parametric model that provides a robust estimation of reliability to be used in a RCM scheme. A Weibull analysis is presented first in a case study within the usual RCM schemes. If the sample of data is severly reduced the weibull analysis lost preciscion, impacting in the RCM scheme. To solve this limitation, a maximum entropy aproach is propoused.Differential entropy has been shown as a solid tool to model the response of a random variable when reduced sample size information is available. We take advantage of the formalism of the variational calculus to express a functional that obeys the Euler-Lagrange equations and supported by the Kolmogorov axioms, we extract a generalized non-parametric probability density. By subjecting this density to appropriate boundary conditions in terms of the first moments of the generalized probability density.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信