利用移位勒让德多项式进行状态估计

B. Mohan, S. Kar
{"title":"利用移位勒让德多项式进行状态估计","authors":"B. Mohan, S. Kar","doi":"10.1109/ICIINFS.2008.4798340","DOIUrl":null,"url":null,"abstract":"A new recursive algorithm is presented for estimating state variables of observable linear time-invariant continuous-time dynamical systems from the system input-output information using shifted Legendre polynomials (SLP). The principle of Luenberger observer is utilized for estimating the state variables. The proposed approach has the distinct advantage that the smoothing effect of integration reduces the influence of zero-mean observation noise on estimation. Results of simulation study on two examples indicate that the proposed recursive algorithm works quite well.","PeriodicalId":429889,"journal":{"name":"2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems","volume":"69 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"State Estimation using Shifted Legendre Polynomials\",\"authors\":\"B. Mohan, S. Kar\",\"doi\":\"10.1109/ICIINFS.2008.4798340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new recursive algorithm is presented for estimating state variables of observable linear time-invariant continuous-time dynamical systems from the system input-output information using shifted Legendre polynomials (SLP). The principle of Luenberger observer is utilized for estimating the state variables. The proposed approach has the distinct advantage that the smoothing effect of integration reduces the influence of zero-mean observation noise on estimation. Results of simulation study on two examples indicate that the proposed recursive algorithm works quite well.\",\"PeriodicalId\":429889,\"journal\":{\"name\":\"2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems\",\"volume\":\"69 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIINFS.2008.4798340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIINFS.2008.4798340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种利用移位勒让德多项式(SLP)从系统输入输出信息估计可观测线性定常连续动力系统状态变量的递推算法。利用Luenberger观测器原理对状态变量进行估计。该方法具有明显的优点,即积分的平滑效应减小了观测噪声对估计的影响。两个算例的仿真研究结果表明,所提出的递归算法效果良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
State Estimation using Shifted Legendre Polynomials
A new recursive algorithm is presented for estimating state variables of observable linear time-invariant continuous-time dynamical systems from the system input-output information using shifted Legendre polynomials (SLP). The principle of Luenberger observer is utilized for estimating the state variables. The proposed approach has the distinct advantage that the smoothing effect of integration reduces the influence of zero-mean observation noise on estimation. Results of simulation study on two examples indicate that the proposed recursive algorithm works quite well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信