基于进化算法的模糊脉冲滤波器参数优化和规则库选择

Mohamed Mohideen Anver, R. Stonier
{"title":"基于进化算法的模糊脉冲滤波器参数优化和规则库选择","authors":"Mohamed Mohideen Anver, R. Stonier","doi":"10.1109/TENCON.2003.1273208","DOIUrl":null,"url":null,"abstract":"In this paper we present an effective scheme for impulse noise removal from highly corrupted images using a soft-computing approach. The filter is capable of preserving the intricate details of the image and is based on a combination of fuzzy impulse detection and restoration of corrupted pixels. In the first stage a fuzzy knowledge base required for detection of impulses as well as the optimum parameters for the fuzzy membership functions employed, is effectively 'learnt' using an evolutionary algorithm (EA). For the detection of noisy pixels and the subsequent replacement, a novel scheme where a pixel is transferred to a simulated noise free environment is introduced. We present the results for several real images and make comparisons with some of the existing noise removal methods wherever applicable to show the effectiveness of the proposed technique.","PeriodicalId":405847,"journal":{"name":"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region","volume":"37 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Parameter optimization and rule base selection for fuzzy impulse filters using evolutionary algorithms\",\"authors\":\"Mohamed Mohideen Anver, R. Stonier\",\"doi\":\"10.1109/TENCON.2003.1273208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present an effective scheme for impulse noise removal from highly corrupted images using a soft-computing approach. The filter is capable of preserving the intricate details of the image and is based on a combination of fuzzy impulse detection and restoration of corrupted pixels. In the first stage a fuzzy knowledge base required for detection of impulses as well as the optimum parameters for the fuzzy membership functions employed, is effectively 'learnt' using an evolutionary algorithm (EA). For the detection of noisy pixels and the subsequent replacement, a novel scheme where a pixel is transferred to a simulated noise free environment is introduced. We present the results for several real images and make comparisons with some of the existing noise removal methods wherever applicable to show the effectiveness of the proposed technique.\",\"PeriodicalId\":405847,\"journal\":{\"name\":\"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region\",\"volume\":\"37 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.2003.1273208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2003.1273208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了一个有效的方案,从高度损坏的图像脉冲噪声去除使用软计算的方法。该滤波器能够保留图像的复杂细节,并基于模糊脉冲检测和损坏像素恢复的组合。在第一阶段,使用进化算法(EA)有效地“学习”脉冲检测所需的模糊知识库以及所采用的模糊隶属函数的最佳参数。针对噪声像素的检测和替换问题,提出了一种将像素转移到模拟的无噪声环境中的新方案。我们给出了几个真实图像的结果,并与一些现有的降噪方法进行了比较,以显示所提出技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter optimization and rule base selection for fuzzy impulse filters using evolutionary algorithms
In this paper we present an effective scheme for impulse noise removal from highly corrupted images using a soft-computing approach. The filter is capable of preserving the intricate details of the image and is based on a combination of fuzzy impulse detection and restoration of corrupted pixels. In the first stage a fuzzy knowledge base required for detection of impulses as well as the optimum parameters for the fuzzy membership functions employed, is effectively 'learnt' using an evolutionary algorithm (EA). For the detection of noisy pixels and the subsequent replacement, a novel scheme where a pixel is transferred to a simulated noise free environment is introduced. We present the results for several real images and make comparisons with some of the existing noise removal methods wherever applicable to show the effectiveness of the proposed technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信