一种改进的量子粒子群算法及其应用

Jiao Xuan, Huang Ming
{"title":"一种改进的量子粒子群算法及其应用","authors":"Jiao Xuan, Huang Ming","doi":"10.1109/ICCSNT.2017.8343471","DOIUrl":null,"url":null,"abstract":"Compared to other intelligent optimization algorithms, Quantum Particle Swarm Optimization (QPSO) possesses the characteristics like rapid convergence rate and outstanding global optimization performance etc. It is more applicable to solve workshop scheduling problems. The article proposes the strategy of improved dynamic reglation of rotation angle to solve multi-objective FJSP problems on the basis of Quantum Particle Swarm Optimization. The method can ensure the position with large variation of adaptive value not over optimal regulation measure, increase the capability to search optimal solution at the position with small variation of adaptive value, and verify the effectiveness of new algorithm through simulation experiement.","PeriodicalId":163433,"journal":{"name":"2017 6th International Conference on Computer Science and Network Technology (ICCSNT)","volume":"35 33","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An improved Quantum Particle Swarm Optimization and its application\",\"authors\":\"Jiao Xuan, Huang Ming\",\"doi\":\"10.1109/ICCSNT.2017.8343471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compared to other intelligent optimization algorithms, Quantum Particle Swarm Optimization (QPSO) possesses the characteristics like rapid convergence rate and outstanding global optimization performance etc. It is more applicable to solve workshop scheduling problems. The article proposes the strategy of improved dynamic reglation of rotation angle to solve multi-objective FJSP problems on the basis of Quantum Particle Swarm Optimization. The method can ensure the position with large variation of adaptive value not over optimal regulation measure, increase the capability to search optimal solution at the position with small variation of adaptive value, and verify the effectiveness of new algorithm through simulation experiement.\",\"PeriodicalId\":163433,\"journal\":{\"name\":\"2017 6th International Conference on Computer Science and Network Technology (ICCSNT)\",\"volume\":\"35 33\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 6th International Conference on Computer Science and Network Technology (ICCSNT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSNT.2017.8343471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 6th International Conference on Computer Science and Network Technology (ICCSNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSNT.2017.8343471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

与其他智能优化算法相比,量子粒子群算法具有收敛速度快、全局寻优性能突出等特点。更适用于解决车间调度问题。提出了一种基于量子粒子群优化的改进旋转角度动态调节策略来解决多目标FJSP问题。该方法可以保证自适应值变化较大的位置不超过最优调节措施,增加了在自适应值变化较小位置搜索最优解的能力,并通过仿真实验验证了新算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved Quantum Particle Swarm Optimization and its application
Compared to other intelligent optimization algorithms, Quantum Particle Swarm Optimization (QPSO) possesses the characteristics like rapid convergence rate and outstanding global optimization performance etc. It is more applicable to solve workshop scheduling problems. The article proposes the strategy of improved dynamic reglation of rotation angle to solve multi-objective FJSP problems on the basis of Quantum Particle Swarm Optimization. The method can ensure the position with large variation of adaptive value not over optimal regulation measure, increase the capability to search optimal solution at the position with small variation of adaptive value, and verify the effectiveness of new algorithm through simulation experiement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信