软件工程中的机器学习:软件重用中的案例研究

Justin S. Di Stefano, T. Menzies
{"title":"软件工程中的机器学习:软件重用中的案例研究","authors":"Justin S. Di Stefano, T. Menzies","doi":"10.1109/TAI.2002.1180811","DOIUrl":null,"url":null,"abstract":"There are many machine learning algorithms currently available. In the 21st century, the problem no longer lies in writing the learner but in choosing which learners to run on a given data set. We argue that the final choice of learners should not be exclusive; in fact, there are distinct advantages in running data sets through multiple learners. To illustrate our point, we perform a case study on a reuse data set using three different styles of learners: association rule, decision tree induction, and treatment. Software reuse is a topic of avid debate in the professional and academic arena; it has proven that it can be both a blessing and a curse. Although there is much debate over where and when reuse should be instituted into a project, our learners found some procedures which should significantly improve the odds of a reuse program succeeding.","PeriodicalId":197064,"journal":{"name":"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.","volume":"34 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Machine learning for software engineering: case studies in software reuse\",\"authors\":\"Justin S. Di Stefano, T. Menzies\",\"doi\":\"10.1109/TAI.2002.1180811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are many machine learning algorithms currently available. In the 21st century, the problem no longer lies in writing the learner but in choosing which learners to run on a given data set. We argue that the final choice of learners should not be exclusive; in fact, there are distinct advantages in running data sets through multiple learners. To illustrate our point, we perform a case study on a reuse data set using three different styles of learners: association rule, decision tree induction, and treatment. Software reuse is a topic of avid debate in the professional and academic arena; it has proven that it can be both a blessing and a curse. Although there is much debate over where and when reuse should be instituted into a project, our learners found some procedures which should significantly improve the odds of a reuse program succeeding.\",\"PeriodicalId\":197064,\"journal\":{\"name\":\"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.\",\"volume\":\"34 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.2002.1180811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.2002.1180811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

目前有许多可用的机器学习算法。在21世纪,问题不再是编写学习器,而是选择在给定的数据集上运行哪些学习器。我们认为学习者的最终选择不应该是排他性的;事实上,通过多个学习器运行数据集有明显的优势。为了说明我们的观点,我们使用三种不同风格的学习器对重用数据集进行了案例研究:关联规则、决策树归纳和处理。软件重用在专业和学术领域都是一个激烈争论的话题;事实证明,它既是一种祝福,也是一种诅咒。尽管对于在什么地方和什么时候将重用引入到项目中存在很多争论,但是我们的学习者发现了一些可以显著提高重用项目成功几率的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning for software engineering: case studies in software reuse
There are many machine learning algorithms currently available. In the 21st century, the problem no longer lies in writing the learner but in choosing which learners to run on a given data set. We argue that the final choice of learners should not be exclusive; in fact, there are distinct advantages in running data sets through multiple learners. To illustrate our point, we perform a case study on a reuse data set using three different styles of learners: association rule, decision tree induction, and treatment. Software reuse is a topic of avid debate in the professional and academic arena; it has proven that it can be both a blessing and a curse. Although there is much debate over where and when reuse should be instituted into a project, our learners found some procedures which should significantly improve the odds of a reuse program succeeding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信