{"title":"近地应用的高通量QC-LDPC解码器","authors":"Shixian Li, Qichen Zhang, Yun Chen, Xiaoyang Zeng","doi":"10.1109/ICDSP.2018.8631641","DOIUrl":null,"url":null,"abstract":"Turbo-like decoding message passing (TDMP) scheduling, which is suitable for quasi-cyclic low-density parity-check (QC-LDPC) codes, can obtain better decoding performance and shorter convergence time than two-phase message passing (TPMP). Normalized min-sum algorithm (NMSA) is used to reduce complexity of soft message processing unit. In this paper, we propose a (8176, 7154) QC-LDPC decoder for Consultative Committee for Space Data Systems (CCSDS) standard. In order to avoid memory access conflicts, two cyclic-shifted identity matrices forming a submatrix are processed individually. The decoder is synthesized by TSMC 65nm CMOS process and can achieve a throughput of 4.1Gb/s at clock frequency of 380MHz.","PeriodicalId":218806,"journal":{"name":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A High-Throughput QC-LDPC Decoder for Near-Earth Application\",\"authors\":\"Shixian Li, Qichen Zhang, Yun Chen, Xiaoyang Zeng\",\"doi\":\"10.1109/ICDSP.2018.8631641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Turbo-like decoding message passing (TDMP) scheduling, which is suitable for quasi-cyclic low-density parity-check (QC-LDPC) codes, can obtain better decoding performance and shorter convergence time than two-phase message passing (TPMP). Normalized min-sum algorithm (NMSA) is used to reduce complexity of soft message processing unit. In this paper, we propose a (8176, 7154) QC-LDPC decoder for Consultative Committee for Space Data Systems (CCSDS) standard. In order to avoid memory access conflicts, two cyclic-shifted identity matrices forming a submatrix are processed individually. The decoder is synthesized by TSMC 65nm CMOS process and can achieve a throughput of 4.1Gb/s at clock frequency of 380MHz.\",\"PeriodicalId\":218806,\"journal\":{\"name\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2018.8631641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2018.8631641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A High-Throughput QC-LDPC Decoder for Near-Earth Application
Turbo-like decoding message passing (TDMP) scheduling, which is suitable for quasi-cyclic low-density parity-check (QC-LDPC) codes, can obtain better decoding performance and shorter convergence time than two-phase message passing (TPMP). Normalized min-sum algorithm (NMSA) is used to reduce complexity of soft message processing unit. In this paper, we propose a (8176, 7154) QC-LDPC decoder for Consultative Committee for Space Data Systems (CCSDS) standard. In order to avoid memory access conflicts, two cyclic-shifted identity matrices forming a submatrix are processed individually. The decoder is synthesized by TSMC 65nm CMOS process and can achieve a throughput of 4.1Gb/s at clock frequency of 380MHz.