最优控制问题的等价性及参数化方法的应用

John E. Dzielski
{"title":"最优控制问题的等价性及参数化方法的应用","authors":"John E. Dzielski","doi":"10.1109/CDC.1990.204038","DOIUrl":null,"url":null,"abstract":"A notion of equivalence for optimal control synthesis problems is defined and partially characterized. If the dynamical constraint satisfies certain well-known conditions, a solution can be obtained by solving a related problem involving a linear constraint. The linearity can be exploited when using functional approximation techniques to obtain a solution. A class of interpolating polynomials is suggested that possess certain characteristics that make them useful when solving the equivalent problem by one of the mathematical programming methodologies.<<ETX>>","PeriodicalId":287089,"journal":{"name":"29th IEEE Conference on Decision and Control","volume":"300 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equivalence of optimal control problems and the use of parameterization methods\",\"authors\":\"John E. Dzielski\",\"doi\":\"10.1109/CDC.1990.204038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A notion of equivalence for optimal control synthesis problems is defined and partially characterized. If the dynamical constraint satisfies certain well-known conditions, a solution can be obtained by solving a related problem involving a linear constraint. The linearity can be exploited when using functional approximation techniques to obtain a solution. A class of interpolating polynomials is suggested that possess certain characteristics that make them useful when solving the equivalent problem by one of the mathematical programming methodologies.<<ETX>>\",\"PeriodicalId\":287089,\"journal\":{\"name\":\"29th IEEE Conference on Decision and Control\",\"volume\":\"300 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"29th IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1990.204038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"29th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1990.204038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

定义了最优控制综合问题的等价概念,并给出了其部分特征。如果动态约束满足某些众所周知的条件,则可以通过求解涉及线性约束的相关问题来得到解。当使用泛函近似技术获得解时,可以利用线性。提出了一类插值多项式,它们具有某些特征,在用数学规划方法求解等效问题时很有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equivalence of optimal control problems and the use of parameterization methods
A notion of equivalence for optimal control synthesis problems is defined and partially characterized. If the dynamical constraint satisfies certain well-known conditions, a solution can be obtained by solving a related problem involving a linear constraint. The linearity can be exploited when using functional approximation techniques to obtain a solution. A class of interpolating polynomials is suggested that possess certain characteristics that make them useful when solving the equivalent problem by one of the mathematical programming methodologies.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信