{"title":"关于b数的m元组的分布","authors":"W. Nowak","doi":"10.2298/PIM0591071N","DOIUrl":null,"url":null,"abstract":"In the classical sense, the set B consists of all integers which can be written as a sum of two perfect squares. In other words, these are the values attained by norms of integral ideals over the Gaussian field Q(i). G. J. Rieger (1965) and T. Cochrane, R. E. Dressler (1987) established bounds for the number of pairs (n; n + h), resp., triples (n; n + 1; n + 2) of B-numbers up to a large real parameter x. The present article generalizes these investigations into two directions: The result obtained deals with arbitrary M-tuples of arithmetic progressions of positive integers excluding the trivial case that one of them is a constant multiple of one of the others. Furthermore, the estimate applies to the case of an arbitrary normal extension K of the rational field instead of Q(i).","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"100 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"ON THE DISTRIBUTION OF M-TUPLES OF B-NUMBERS\",\"authors\":\"W. Nowak\",\"doi\":\"10.2298/PIM0591071N\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the classical sense, the set B consists of all integers which can be written as a sum of two perfect squares. In other words, these are the values attained by norms of integral ideals over the Gaussian field Q(i). G. J. Rieger (1965) and T. Cochrane, R. E. Dressler (1987) established bounds for the number of pairs (n; n + h), resp., triples (n; n + 1; n + 2) of B-numbers up to a large real parameter x. The present article generalizes these investigations into two directions: The result obtained deals with arbitrary M-tuples of arithmetic progressions of positive integers excluding the trivial case that one of them is a constant multiple of one of the others. Furthermore, the estimate applies to the case of an arbitrary normal extension K of the rational field instead of Q(i).\",\"PeriodicalId\":416273,\"journal\":{\"name\":\"Publications De L'institut Mathematique\",\"volume\":\"100 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications De L'institut Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/PIM0591071N\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM0591071N","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
摘要
在经典意义上,集合B由所有可以写成两个完全平方和的整数组成。换句话说,这些值是由高斯场Q(i)上的积分理想的范数得到的。G. J. Rieger(1965)和T. Cochrane, R. E. Dressler(1987)建立了对数(n;N + h),代表。, triples (n;N + 1;本文将这些研究推广到两个方向:所得到的结果处理任意正整数等差数列的m元组,排除其中一个是另一个的常数倍的平凡情况。此外,该估计适用于有理域的任意正态扩展K而不是Q(i)的情况。
In the classical sense, the set B consists of all integers which can be written as a sum of two perfect squares. In other words, these are the values attained by norms of integral ideals over the Gaussian field Q(i). G. J. Rieger (1965) and T. Cochrane, R. E. Dressler (1987) established bounds for the number of pairs (n; n + h), resp., triples (n; n + 1; n + 2) of B-numbers up to a large real parameter x. The present article generalizes these investigations into two directions: The result obtained deals with arbitrary M-tuples of arithmetic progressions of positive integers excluding the trivial case that one of them is a constant multiple of one of the others. Furthermore, the estimate applies to the case of an arbitrary normal extension K of the rational field instead of Q(i).