块带状逆块矩阵的反演:在Kalman-Bucy滤波中的应用

A. Asif, José M. F. Moura
{"title":"块带状逆块矩阵的反演:在Kalman-Bucy滤波中的应用","authors":"A. Asif, José M. F. Moura","doi":"10.1109/ICASSP.2000.862055","DOIUrl":null,"url":null,"abstract":"We investigate the properties of block matrices with block banded inverses to derive efficient matrix inversion algorithms for such matrices. In particular, we derive the following: (1) a recursive algorithm to invert a full matrix whose inverse is structured as a block tridiagonal matrix; (2) a recursive algorithm to compute the inverse of a structured block tridiagonal matrix. These algorithms are exact. They reduce the computational complexity respectively by two and one orders of magnitude over the direct inversion of the associated matrices. We apply these algorithms to develop a computationally efficient approximate implementation of the Kalman-Bucy filter (KBf) that we refer to as the local KBf. The computational effort of the local KBf is reduced by a factor of I/sup 2/ over the exact KBf while exhibiting near-optimal performance.","PeriodicalId":164817,"journal":{"name":"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)","volume":"65 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Inversion of block matrices with block banded inverses: application to Kalman-Bucy filtering\",\"authors\":\"A. Asif, José M. F. Moura\",\"doi\":\"10.1109/ICASSP.2000.862055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the properties of block matrices with block banded inverses to derive efficient matrix inversion algorithms for such matrices. In particular, we derive the following: (1) a recursive algorithm to invert a full matrix whose inverse is structured as a block tridiagonal matrix; (2) a recursive algorithm to compute the inverse of a structured block tridiagonal matrix. These algorithms are exact. They reduce the computational complexity respectively by two and one orders of magnitude over the direct inversion of the associated matrices. We apply these algorithms to develop a computationally efficient approximate implementation of the Kalman-Bucy filter (KBf) that we refer to as the local KBf. The computational effort of the local KBf is reduced by a factor of I/sup 2/ over the exact KBf while exhibiting near-optimal performance.\",\"PeriodicalId\":164817,\"journal\":{\"name\":\"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)\",\"volume\":\"65 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2000.862055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2000.862055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

我们研究了具有块带状逆的块矩阵的性质,并给出了这种矩阵的有效的矩阵反演算法。特别地,我们得到了以下结论:(1)一个求逆全矩阵的递归算法,其逆结构为块三对角矩阵;(2)计算结构化块三对角矩阵逆的递归算法。这些算法是精确的。它们分别将相关矩阵的直接反演的计算复杂度降低了两个和一个数量级。我们应用这些算法来开发一种计算效率高的卡尔曼-布西滤波器(KBf)的近似实现,我们称之为局部KBf。局部KBf的计算工作量比精确的KBf减少了1 /sup 2/,同时表现出接近最佳的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inversion of block matrices with block banded inverses: application to Kalman-Bucy filtering
We investigate the properties of block matrices with block banded inverses to derive efficient matrix inversion algorithms for such matrices. In particular, we derive the following: (1) a recursive algorithm to invert a full matrix whose inverse is structured as a block tridiagonal matrix; (2) a recursive algorithm to compute the inverse of a structured block tridiagonal matrix. These algorithms are exact. They reduce the computational complexity respectively by two and one orders of magnitude over the direct inversion of the associated matrices. We apply these algorithms to develop a computationally efficient approximate implementation of the Kalman-Bucy filter (KBf) that we refer to as the local KBf. The computational effort of the local KBf is reduced by a factor of I/sup 2/ over the exact KBf while exhibiting near-optimal performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信