{"title":"树形网络中管道PIF的自稳定协议","authors":"Daisuke Kondou, Hideo Masuda, T. Masuzawa","doi":"10.1109/ICDCS.2002.1022255","DOIUrl":null,"url":null,"abstract":"Self-stabilization is a promising paradigm for achieving fault-tolerance of distributed systems. A self-stabilizing protocol can converge to its intended behavior even when it starts from any system configuration, and, thus, can tolerate any type and any number of transient faults. The PIF (propagation of information with feedback) scheme in a tree network allows the root process to broadcast its information to all other processes and to collect their responses. Many distributed systems utilize the PIF scheme as a fundamental communication scheme. This paper first formalizes the pipelined PIF in tree networks, and proposes a self-stabilizing protocol for the pipelined PIF. The protocol applies the PIF to a sequence of information in a pipelined fashion. The protocol has stabilizing time of O(h) (where h is the height of the tree network). After stabilization, it completes each PIF in O(h) asynchronous rounds and has throughput of O(1). Moreover, the protocol achieves fault-containment: for a complete binary tree network, its expected stabilizing time from 1-faulty configurations is O(1).","PeriodicalId":186210,"journal":{"name":"Proceedings 22nd International Conference on Distributed Computing Systems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A self-stabilizing protocol for pipelined PIF in tree networks\",\"authors\":\"Daisuke Kondou, Hideo Masuda, T. Masuzawa\",\"doi\":\"10.1109/ICDCS.2002.1022255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-stabilization is a promising paradigm for achieving fault-tolerance of distributed systems. A self-stabilizing protocol can converge to its intended behavior even when it starts from any system configuration, and, thus, can tolerate any type and any number of transient faults. The PIF (propagation of information with feedback) scheme in a tree network allows the root process to broadcast its information to all other processes and to collect their responses. Many distributed systems utilize the PIF scheme as a fundamental communication scheme. This paper first formalizes the pipelined PIF in tree networks, and proposes a self-stabilizing protocol for the pipelined PIF. The protocol applies the PIF to a sequence of information in a pipelined fashion. The protocol has stabilizing time of O(h) (where h is the height of the tree network). After stabilization, it completes each PIF in O(h) asynchronous rounds and has throughput of O(1). Moreover, the protocol achieves fault-containment: for a complete binary tree network, its expected stabilizing time from 1-faulty configurations is O(1).\",\"PeriodicalId\":186210,\"journal\":{\"name\":\"Proceedings 22nd International Conference on Distributed Computing Systems\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 22nd International Conference on Distributed Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS.2002.1022255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 22nd International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2002.1022255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A self-stabilizing protocol for pipelined PIF in tree networks
Self-stabilization is a promising paradigm for achieving fault-tolerance of distributed systems. A self-stabilizing protocol can converge to its intended behavior even when it starts from any system configuration, and, thus, can tolerate any type and any number of transient faults. The PIF (propagation of information with feedback) scheme in a tree network allows the root process to broadcast its information to all other processes and to collect their responses. Many distributed systems utilize the PIF scheme as a fundamental communication scheme. This paper first formalizes the pipelined PIF in tree networks, and proposes a self-stabilizing protocol for the pipelined PIF. The protocol applies the PIF to a sequence of information in a pipelined fashion. The protocol has stabilizing time of O(h) (where h is the height of the tree network). After stabilization, it completes each PIF in O(h) asynchronous rounds and has throughput of O(1). Moreover, the protocol achieves fault-containment: for a complete binary tree network, its expected stabilizing time from 1-faulty configurations is O(1).