{"title":"脑电数据Stiefel流形积的子空间奇度优化","authors":"M. Yamamoto, F. Yger, S. Chevallier","doi":"10.1109/ICASSP39728.2021.9413730","DOIUrl":null,"url":null,"abstract":"Dimensionality reduction of high-dimensional electroencephalography (EEG) covariance matrices is crucial for effective utilization of Riemannian geometry in Brain-Computer Interfaces (BCI). In this paper, we propose a novel similarity-based classification method that relies on dimensionality reduction of EEG covariance matrices. Conventionally, the dimension of the original high-dimensional space is reduced by projecting into one low-dimensional space, and the similarity is learned only based on the single space. In contrast, our method, MUltiple SUbspace Mdm Estimation (MUSUME), obtains multiple low-dimensional spaces that enhance class separability by solving the proposed optimization problem, then the similarity is learned in each low-dimensional space. This multiple projection approach encourages finding the space that is more useful for similarity learning. Experimental evaluation with high-dimensionality EEG datasets (128 channels) confirmed that MUSUME proved significant improvement for classification (p < 0.001) and also it showed the potential to beat the existing method relying on only one subspace representation.","PeriodicalId":347060,"journal":{"name":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"2 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Subspace Oddity - Optimization on Product of Stiefel Manifolds for EEG Data\",\"authors\":\"M. Yamamoto, F. Yger, S. Chevallier\",\"doi\":\"10.1109/ICASSP39728.2021.9413730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dimensionality reduction of high-dimensional electroencephalography (EEG) covariance matrices is crucial for effective utilization of Riemannian geometry in Brain-Computer Interfaces (BCI). In this paper, we propose a novel similarity-based classification method that relies on dimensionality reduction of EEG covariance matrices. Conventionally, the dimension of the original high-dimensional space is reduced by projecting into one low-dimensional space, and the similarity is learned only based on the single space. In contrast, our method, MUltiple SUbspace Mdm Estimation (MUSUME), obtains multiple low-dimensional spaces that enhance class separability by solving the proposed optimization problem, then the similarity is learned in each low-dimensional space. This multiple projection approach encourages finding the space that is more useful for similarity learning. Experimental evaluation with high-dimensionality EEG datasets (128 channels) confirmed that MUSUME proved significant improvement for classification (p < 0.001) and also it showed the potential to beat the existing method relying on only one subspace representation.\",\"PeriodicalId\":347060,\"journal\":{\"name\":\"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"2 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP39728.2021.9413730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP39728.2021.9413730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Subspace Oddity - Optimization on Product of Stiefel Manifolds for EEG Data
Dimensionality reduction of high-dimensional electroencephalography (EEG) covariance matrices is crucial for effective utilization of Riemannian geometry in Brain-Computer Interfaces (BCI). In this paper, we propose a novel similarity-based classification method that relies on dimensionality reduction of EEG covariance matrices. Conventionally, the dimension of the original high-dimensional space is reduced by projecting into one low-dimensional space, and the similarity is learned only based on the single space. In contrast, our method, MUltiple SUbspace Mdm Estimation (MUSUME), obtains multiple low-dimensional spaces that enhance class separability by solving the proposed optimization problem, then the similarity is learned in each low-dimensional space. This multiple projection approach encourages finding the space that is more useful for similarity learning. Experimental evaluation with high-dimensionality EEG datasets (128 channels) confirmed that MUSUME proved significant improvement for classification (p < 0.001) and also it showed the potential to beat the existing method relying on only one subspace representation.