基于深度学习的印度语多类口语识别

Lakshmana Rao Arla, Sridevi Bonthu, Abhinav Dayal
{"title":"基于深度学习的印度语多类口语识别","authors":"Lakshmana Rao Arla, Sridevi Bonthu, Abhinav Dayal","doi":"10.1109/IBSSC51096.2020.9332161","DOIUrl":null,"url":null,"abstract":"Spoken Language Identification (SLID) aims at assigning language labels to speech in an audio file. This paper proposes an approach based on Convolution Neural Networks (CNN) for the automatic identification of four Indian languages, Bengali, Gujarati, Tamil and Telugu. The classifier is trained on audio data of 5 hours duration, from each of the four languages. The CNN operates on MFCC spectrogram images generated from short splits of two to four second duration from the raw audio input with varying audio quality and noise print. The paper also analyzes the SLID system performance as a function of different train and test audio sample durations. The proposed CNN model achieves 88.82% accuracy, which can be considered as best when compared with machine learning models.","PeriodicalId":432093,"journal":{"name":"2020 IEEE Bombay Section Signature Conference (IBSSC)","volume":"6 23","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Multiclass Spoken Language Identification for Indian Languages using Deep Learning\",\"authors\":\"Lakshmana Rao Arla, Sridevi Bonthu, Abhinav Dayal\",\"doi\":\"10.1109/IBSSC51096.2020.9332161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spoken Language Identification (SLID) aims at assigning language labels to speech in an audio file. This paper proposes an approach based on Convolution Neural Networks (CNN) for the automatic identification of four Indian languages, Bengali, Gujarati, Tamil and Telugu. The classifier is trained on audio data of 5 hours duration, from each of the four languages. The CNN operates on MFCC spectrogram images generated from short splits of two to four second duration from the raw audio input with varying audio quality and noise print. The paper also analyzes the SLID system performance as a function of different train and test audio sample durations. The proposed CNN model achieves 88.82% accuracy, which can be considered as best when compared with machine learning models.\",\"PeriodicalId\":432093,\"journal\":{\"name\":\"2020 IEEE Bombay Section Signature Conference (IBSSC)\",\"volume\":\"6 23\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Bombay Section Signature Conference (IBSSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IBSSC51096.2020.9332161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Bombay Section Signature Conference (IBSSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBSSC51096.2020.9332161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

口语识别(slide)旨在为音频文件中的语音分配语言标签。本文提出了一种基于卷积神经网络(CNN)的四种印度语言(孟加拉语、古吉拉特语、泰米尔语和泰卢固语)的自动识别方法。分类器在4种语言中每一种的5小时音频数据上进行训练。CNN对MFCC频谱图图像进行操作,这些图像是从具有不同音频质量和噪声打印的原始音频输入中产生的2到4秒持续时间的短分割。本文还分析了不同训练时间和测试音频采样时间对系统性能的影响。本文提出的CNN模型准确率达到了88.82%,与机器学习模型相比可以认为是最好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiclass Spoken Language Identification for Indian Languages using Deep Learning
Spoken Language Identification (SLID) aims at assigning language labels to speech in an audio file. This paper proposes an approach based on Convolution Neural Networks (CNN) for the automatic identification of four Indian languages, Bengali, Gujarati, Tamil and Telugu. The classifier is trained on audio data of 5 hours duration, from each of the four languages. The CNN operates on MFCC spectrogram images generated from short splits of two to four second duration from the raw audio input with varying audio quality and noise print. The paper also analyzes the SLID system performance as a function of different train and test audio sample durations. The proposed CNN model achieves 88.82% accuracy, which can be considered as best when compared with machine learning models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信