并网混合风能/光伏/燃料电池能源系统

N. Ahmed
{"title":"并网混合风能/光伏/燃料电池能源系统","authors":"N. Ahmed","doi":"10.1109/ASSCC.2012.6523247","DOIUrl":null,"url":null,"abstract":"In this paper, development and simulation of an efficient small-scale centralized dc-bus grid connected hybrid wind/photovoltaic/fuel cell for supplying power to a low voltage distribution system are presented. The hybrid system consists of wind and photovoltaic as a primary power system. A fuel cell is added as a secondary system to ensure continuous power supply and to take care of the intermittent nature of wind and photovoltaic. The objective of this study is to design and control a hybrid system that guarantees the energy continuity. A simple control method is applied to the proposed configuration to simultaneously achieve three desired goals: to extract maximum power from each hybrid power system component; to guarantee dc bus voltage regulation at the input of the inverter; and to transfer the total produced power to the grid at unity power factor, while fulfilling all necessary interconnection requirements. The simulation results indicate that the dc-dc converters are very effective in tracking the maximum power of the wind and photovoltaic sources, the fuel cell controller responds efficiently to the deficit power demands.","PeriodicalId":341348,"journal":{"name":"2012 10th International Power & Energy Conference (IPEC)","volume":"15 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"On-grid hybrid wind/photovoltaic/fuel cell energy system\",\"authors\":\"N. Ahmed\",\"doi\":\"10.1109/ASSCC.2012.6523247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, development and simulation of an efficient small-scale centralized dc-bus grid connected hybrid wind/photovoltaic/fuel cell for supplying power to a low voltage distribution system are presented. The hybrid system consists of wind and photovoltaic as a primary power system. A fuel cell is added as a secondary system to ensure continuous power supply and to take care of the intermittent nature of wind and photovoltaic. The objective of this study is to design and control a hybrid system that guarantees the energy continuity. A simple control method is applied to the proposed configuration to simultaneously achieve three desired goals: to extract maximum power from each hybrid power system component; to guarantee dc bus voltage regulation at the input of the inverter; and to transfer the total produced power to the grid at unity power factor, while fulfilling all necessary interconnection requirements. The simulation results indicate that the dc-dc converters are very effective in tracking the maximum power of the wind and photovoltaic sources, the fuel cell controller responds efficiently to the deficit power demands.\",\"PeriodicalId\":341348,\"journal\":{\"name\":\"2012 10th International Power & Energy Conference (IPEC)\",\"volume\":\"15 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 10th International Power & Energy Conference (IPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASSCC.2012.6523247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 10th International Power & Energy Conference (IPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2012.6523247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

本文介绍了一种高效的小型集中式直流母线并网的风能/光伏/燃料电池混合供电系统的开发与仿真。该混合系统由风能和光伏作为一次电力系统组成。燃料电池作为辅助系统被添加,以确保持续的电力供应,并照顾到风能和光伏的间歇性。本研究的目的是设计和控制一个保证能量连续性的混合系统。采用一种简单的控制方法对所提出的配置进行控制,以同时实现三个期望目标:从每个混合动力系统组件中提取最大功率;保证逆变器输入直流母线稳压;在满足所有必要的互联要求的同时,以单位功率因数将总发电量输送到电网。仿真结果表明,dc-dc变换器能够有效地跟踪风电和光伏电源的最大功率,燃料电池控制器能够有效地响应亏缺功率需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On-grid hybrid wind/photovoltaic/fuel cell energy system
In this paper, development and simulation of an efficient small-scale centralized dc-bus grid connected hybrid wind/photovoltaic/fuel cell for supplying power to a low voltage distribution system are presented. The hybrid system consists of wind and photovoltaic as a primary power system. A fuel cell is added as a secondary system to ensure continuous power supply and to take care of the intermittent nature of wind and photovoltaic. The objective of this study is to design and control a hybrid system that guarantees the energy continuity. A simple control method is applied to the proposed configuration to simultaneously achieve three desired goals: to extract maximum power from each hybrid power system component; to guarantee dc bus voltage regulation at the input of the inverter; and to transfer the total produced power to the grid at unity power factor, while fulfilling all necessary interconnection requirements. The simulation results indicate that the dc-dc converters are very effective in tracking the maximum power of the wind and photovoltaic sources, the fuel cell controller responds efficiently to the deficit power demands.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信