{"title":"在鲁棒有限状态系统中贴现过去","authors":"M. Rungger, P. Tabuada","doi":"10.1109/CDC.2014.7039486","DOIUrl":null,"url":null,"abstract":"In this paper we introduce discounted input-output dynamical stability as a variant of a recently introduced notion of robustness for discrete and cyber-physical systems. We analyze the verification and synthesis problems for this new notion of robustness for discrete systems given by finite-state automata. We show that the verification problem can be solved in terms of a linear program and hence is solvable in polynomial time. We provide an approximate solution to the synthesis problem whose complexity depends on the accuracy of the approximation. We discuss the merits and drawbacks of discounted input-output dynamical stability in comparison with existing robustness concepts for discrete systems.","PeriodicalId":202708,"journal":{"name":"53rd IEEE Conference on Decision and Control","volume":"18 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discounting the past in robust finite-state systems\",\"authors\":\"M. Rungger, P. Tabuada\",\"doi\":\"10.1109/CDC.2014.7039486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce discounted input-output dynamical stability as a variant of a recently introduced notion of robustness for discrete and cyber-physical systems. We analyze the verification and synthesis problems for this new notion of robustness for discrete systems given by finite-state automata. We show that the verification problem can be solved in terms of a linear program and hence is solvable in polynomial time. We provide an approximate solution to the synthesis problem whose complexity depends on the accuracy of the approximation. We discuss the merits and drawbacks of discounted input-output dynamical stability in comparison with existing robustness concepts for discrete systems.\",\"PeriodicalId\":202708,\"journal\":{\"name\":\"53rd IEEE Conference on Decision and Control\",\"volume\":\"18 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"53rd IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2014.7039486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"53rd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2014.7039486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discounting the past in robust finite-state systems
In this paper we introduce discounted input-output dynamical stability as a variant of a recently introduced notion of robustness for discrete and cyber-physical systems. We analyze the verification and synthesis problems for this new notion of robustness for discrete systems given by finite-state automata. We show that the verification problem can be solved in terms of a linear program and hence is solvable in polynomial time. We provide an approximate solution to the synthesis problem whose complexity depends on the accuracy of the approximation. We discuss the merits and drawbacks of discounted input-output dynamical stability in comparison with existing robustness concepts for discrete systems.