输出增强在没有任何领域知识的情况下也能很好地工作

Shuuichirou Eguchi, Ryosuke Nakamura, Masaru Tanaka
{"title":"输出增强在没有任何领域知识的情况下也能很好地工作","authors":"Shuuichirou Eguchi, Ryosuke Nakamura, Masaru Tanaka","doi":"10.23919/MVA51890.2021.9511367","DOIUrl":null,"url":null,"abstract":"Data augmentation is a method to compensate a lack of sufficient amount of training data by increasing variations of the training data. It is also used even when there is a huge amount of training data to improve a generalization performance on the test data. In this paper, we propose a new method, Output-Augmentation (OA), which we use to improve the generalization performance without data augmentation. It augments each original output (but not input) and produces an arbitrary number of outputs which average to the original output. Updating the parameters is done by using the gradient over both the original and the augmented outputs. We conclude that the proposed novel method strongly complements the existing ones by showing empirical evaluations where we see improvements of the generalization performance in the task of image classification.","PeriodicalId":312481,"journal":{"name":"2021 17th International Conference on Machine Vision and Applications (MVA)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Output augmentation works well without any domain knowledge\",\"authors\":\"Shuuichirou Eguchi, Ryosuke Nakamura, Masaru Tanaka\",\"doi\":\"10.23919/MVA51890.2021.9511367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data augmentation is a method to compensate a lack of sufficient amount of training data by increasing variations of the training data. It is also used even when there is a huge amount of training data to improve a generalization performance on the test data. In this paper, we propose a new method, Output-Augmentation (OA), which we use to improve the generalization performance without data augmentation. It augments each original output (but not input) and produces an arbitrary number of outputs which average to the original output. Updating the parameters is done by using the gradient over both the original and the augmented outputs. We conclude that the proposed novel method strongly complements the existing ones by showing empirical evaluations where we see improvements of the generalization performance in the task of image classification.\",\"PeriodicalId\":312481,\"journal\":{\"name\":\"2021 17th International Conference on Machine Vision and Applications (MVA)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 17th International Conference on Machine Vision and Applications (MVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MVA51890.2021.9511367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA51890.2021.9511367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据增强是一种通过增加训练数据的变化来弥补训练数据量不足的方法。即使在有大量训练数据的情况下,也可以使用它来提高测试数据的泛化性能。在本文中,我们提出了一种新的方法,输出增强(OA),我们使用它来提高泛化性能,而无需数据增强。它增加每个原始输出(但不是输入),并产生任意数量的输出,这些输出与原始输出平均。更新参数是通过在原始输出和增强输出上使用梯度来完成的。我们得出的结论是,提出的新方法通过展示经验评估强有力地补充了现有的方法,我们看到了图像分类任务中泛化性能的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Output augmentation works well without any domain knowledge
Data augmentation is a method to compensate a lack of sufficient amount of training data by increasing variations of the training data. It is also used even when there is a huge amount of training data to improve a generalization performance on the test data. In this paper, we propose a new method, Output-Augmentation (OA), which we use to improve the generalization performance without data augmentation. It augments each original output (but not input) and produces an arbitrary number of outputs which average to the original output. Updating the parameters is done by using the gradient over both the original and the augmented outputs. We conclude that the proposed novel method strongly complements the existing ones by showing empirical evaluations where we see improvements of the generalization performance in the task of image classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信