{"title":"协同过滤的广义概率矩阵分解","authors":"Hanhuai Shan, A. Banerjee","doi":"10.1109/ICDM.2010.116","DOIUrl":null,"url":null,"abstract":"Probabilistic matrix factorization (PMF) methods have shown great promise in collaborative filtering. In this paper, we consider several variants and generalizations of PMF framework inspired by three broad questions: Are the prior distributions used in existing PMF models suitable, or can one get better predictive performance with different priors? Are there suitable extensions to leverage side information? Are there benefits to taking into account row and column biases? We develop new families of PMF models to address these questions along with efficient approximate inference algorithms for learning and prediction. Through extensive experiments on movie recommendation datasets, we illustrate that simpler models directly capturing correlations among latent factors can outperform existing PMF models, side information can benefit prediction accuracy, and accounting for row/column biases leads to improvements in predictive performance.","PeriodicalId":294061,"journal":{"name":"2010 IEEE International Conference on Data Mining","volume":"47 15","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"162","resultStr":"{\"title\":\"Generalized Probabilistic Matrix Factorizations for Collaborative Filtering\",\"authors\":\"Hanhuai Shan, A. Banerjee\",\"doi\":\"10.1109/ICDM.2010.116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Probabilistic matrix factorization (PMF) methods have shown great promise in collaborative filtering. In this paper, we consider several variants and generalizations of PMF framework inspired by three broad questions: Are the prior distributions used in existing PMF models suitable, or can one get better predictive performance with different priors? Are there suitable extensions to leverage side information? Are there benefits to taking into account row and column biases? We develop new families of PMF models to address these questions along with efficient approximate inference algorithms for learning and prediction. Through extensive experiments on movie recommendation datasets, we illustrate that simpler models directly capturing correlations among latent factors can outperform existing PMF models, side information can benefit prediction accuracy, and accounting for row/column biases leads to improvements in predictive performance.\",\"PeriodicalId\":294061,\"journal\":{\"name\":\"2010 IEEE International Conference on Data Mining\",\"volume\":\"47 15\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"162\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2010.116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2010.116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Generalized Probabilistic Matrix Factorizations for Collaborative Filtering
Probabilistic matrix factorization (PMF) methods have shown great promise in collaborative filtering. In this paper, we consider several variants and generalizations of PMF framework inspired by three broad questions: Are the prior distributions used in existing PMF models suitable, or can one get better predictive performance with different priors? Are there suitable extensions to leverage side information? Are there benefits to taking into account row and column biases? We develop new families of PMF models to address these questions along with efficient approximate inference algorithms for learning and prediction. Through extensive experiments on movie recommendation datasets, we illustrate that simpler models directly capturing correlations among latent factors can outperform existing PMF models, side information can benefit prediction accuracy, and accounting for row/column biases leads to improvements in predictive performance.